What have we learnt to date from large-scale CCS projects?

IEA Greenhouse Gas R&D Programme
John Gale, Tim Dixon, Brendan Beck, Mike Haines

Climate Change Congress, Copenhagen 10-12 March 2009

www.ieagreen.org.uk
What have we learnt to date - projects?

- Review current operational large-scale CCS projects
 - Assess learning from projects
 - Identify gaps in the global CCS project portfolio
- Focus on projects relevant to full-commercial scale operation
 - Includes:
 - Large-scale pilot
 - Demonstration
 - Commercial
 - Excludes
 - Small and medium pilot
 - Lab scale
- Define criteria – Identify projects – Collect information - Analyse
Criteria for large-scale operational projects

- Indicative criteria defined for ‘large-scale operational projects’
- Was, or had been, operational by the end of 2008, and either:-
 - Captures over 10,000 tCO₂ per year from a flue gas
 - Injects over 10,000 tCO₂ per year with the purpose of geological storage with monitoring
 - Captures over 100,000 tCO₂ per year from any source
 - Coal-bed storage of over 10,000 tCO₂ per year
 - *Commercial CO₂ EOR is excluded unless there is a monitoring programme to provide learning.*
- *Does not need to be fully integrated*

- Added term ‘large-scale operational’ to IEA GHG Projects database
Projects identified

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellingham Cogeneration Facility</td>
<td>IFFCO CO2 Recovery Plant – Aonla</td>
</tr>
<tr>
<td>CASTOR Project</td>
<td>Prosint Methanol Plant</td>
</tr>
<tr>
<td>Great Plains Synfuel Plant</td>
<td>Rangely CO2 Project</td>
</tr>
<tr>
<td>IMC Global Soda Plant</td>
<td>Schwarze Pumpe</td>
</tr>
<tr>
<td>In Salah</td>
<td>SECARB - Cranfield II</td>
</tr>
<tr>
<td>K12-B</td>
<td>Shady Point Power Plant</td>
</tr>
<tr>
<td>Ketzin Project</td>
<td>Sleipner</td>
</tr>
<tr>
<td>MRCSP - Michigan Basin</td>
<td>Snohvit LNG Project</td>
</tr>
<tr>
<td>Nagaoka</td>
<td>SRCSP - Aneth EOR-Paradox Basin</td>
</tr>
<tr>
<td>Otway Basin Project</td>
<td>SRCSP - San Juan Basin</td>
</tr>
<tr>
<td>Pembina Cardium Project</td>
<td>Sumitomo Chemicals Plant</td>
</tr>
<tr>
<td>Petronas Fertilizer Plant</td>
<td>Warrior Run Power Plant</td>
</tr>
<tr>
<td>IFFCO CO2 Recovery Plant - Phulpur</td>
<td>Weyburn</td>
</tr>
<tr>
<td>Chemical Co. “A” CO2 Recovery Plant</td>
<td>Zama EOR Project</td>
</tr>
</tbody>
</table>

www.ieagreen.org.uk
Projects identified

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Location/Plant</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellingham Cogeneration Facility</td>
<td>IFFCO CO2 Recovery Plant – Aonla</td>
<td>Capture over 100ktCO₂</td>
</tr>
<tr>
<td>CASTOR Project</td>
<td>Prosint Methanol Plant</td>
<td>Injection over 10ktCO₂ for storage</td>
</tr>
<tr>
<td>Great Plains Synfuel Plant</td>
<td>Rangely CO2 Project</td>
<td></td>
</tr>
<tr>
<td>IMC Global Soda Plant</td>
<td>Schwarze Pumpe</td>
<td></td>
</tr>
<tr>
<td>In Salah</td>
<td>SECARB - Cranfield II</td>
<td></td>
</tr>
<tr>
<td>K12-B Project</td>
<td>Shady Point Power Plant</td>
<td></td>
</tr>
<tr>
<td>Ketzin Project</td>
<td>Sleipner</td>
<td></td>
</tr>
<tr>
<td>MRCSP - Michigan Basin</td>
<td>Snohvit LNG Project</td>
<td></td>
</tr>
<tr>
<td>Nagaoka</td>
<td>SRCSP - Aneth EOR-Paradox Basin</td>
<td></td>
</tr>
<tr>
<td>Otway Basin Project</td>
<td>SRCSP - San Juan Basin</td>
<td></td>
</tr>
<tr>
<td>Pembina Cardium Project</td>
<td>Sumitomo Chemicals Plant</td>
<td></td>
</tr>
<tr>
<td>Petronas Fertilizer Plant</td>
<td>Warrior Run Power Plant</td>
<td></td>
</tr>
<tr>
<td>IFFCO CO2 Recovery Plant - Phulpur</td>
<td>Weyburn</td>
<td></td>
</tr>
<tr>
<td>Chemical Co. “A” CO2 Recovery Plant</td>
<td>Zama EOR Project</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Capture over 100ktCO₂**
- **Injection over 10ktCO₂ for storage**
- **Monitored EOR over 10ktCO₂**
- **Capture over 10ktCO₂ from flue gas**
- **Coal bed storage over 10ktCO₂**
Capture over 100ktCO$_2$

Injection over 10ktCO$_2$ for storage

Monitored EOR over 10ktCO$_2$

Capture over 10ktCO$_2$ from flue gas

Coal bed storage over 10ktCO$_2$
Information Gathering

- 28 large scale operational projects identified
- Each project has been asked to provide information using a questionnaire
- 18 Responses so far (6th March 2009)

- Analysis of projects in 2 parts:
 - Extent of project coverage
 - Key learning from projects
Extent of coverage - Capture

- 13 plants capturing from combustion processes
 - 11 post-combustion
 - 1 pre-combustion
 - 1 oxyfuel
- 9 projects source CO₂ from industrial processing (Natural gas separation, ammonia, LNG, hydrogen production)
- Multiple fuels represented
 - Hard coal
 - Lignite
 - Natural Gas
 - Industrial processes
- Over 10Mt of CO₂ captured per year
Extent of coverage - Transport

- Pipeline
 - Single sink source pipelines
 - Multiple source-multiple sink pipeline networks
- Truck
- Cross-border transport
- Transport over 860km
Extent of coverage – Injection

- Over 10Mt injected per year
- Multiple purposes for injection
 - Storage
 - EOR
 - ECBM

![Pie chart showing injection purposes](www.ieagreen.org.uk)
Extent of coverage – Storage Formations

- A variety of storage formations
 - Sandstone
 - Carbonate
 - Coal

![Pie chart showing distribution of storage formations](image-url)
Permeability

![Graph showing permeability values with min, typical, and max markers.](image-url)
Reservoir Depth

![Graph showing reservoir depth](image-url)
Extent of coverage – Storage amounts

- There are six projects that store over 40,000t CO$_2$ per year
- All projects combine store almost 6Mt per year
- Total of 57 project years of CO$_2$ storage experience
- Over 40Mt of CO$_2$ stored
Extent of coverage – Monitoring

- 2D seismic
- 3D seismic
- 4D seismic
- Vertical seismic profiling
- Cross-well seismic
- Electrical conductivity
- Microseismic
- Passive seismic
- Soil gas sampling
- Detector arrays
- Eddy covariance
- Observation wells
- Time lapse microgravity
- Well temperature and pressure
- Well logs
- Tracers
- Ground water geochemistry
- Interferometry
- Satellite imaging
- Tilt meters

www.ieagreen.org.uk
Extent of coverage vs ZEP project matrix

<table>
<thead>
<tr>
<th>Archetype 1</th>
<th>Archetype 2</th>
<th>Archetype 3</th>
<th>Archetype 4</th>
<th>Archetype 5</th>
<th>Archetype 6</th>
<th>Archetype 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignite/co-firing with Biomass</td>
<td>Pre-combustion, variant A</td>
<td>Cross-border pipeline</td>
<td>Offshore depleted oil & gas field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>Post-combustion, variant A</td>
<td>Pipeline</td>
<td>Offshore structural deep saline aquifer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Coal</td>
<td>Oxy-fuel, variant A</td>
<td>Shlp</td>
<td>Offshore open deep saline aquifer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Coal</td>
<td>Post-combustion, variant A</td>
<td>Pipeline</td>
<td>Offshore depleted oil & gas field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignite</td>
<td>Oxy-fuel, variant B</td>
<td>Pipeline</td>
<td>Onshore structural deep saline aquifer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Coal</td>
<td>Pre-combustion, variant B</td>
<td>Pipeline</td>
<td>Offshore depleted oil & gas field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Coal</td>
<td>Post-combustion, variant B</td>
<td>Pipeline</td>
<td>Offshore open deep saline aquifer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demonstrated in operational large projects

Not demonstrated in operational large projects

Extent of Coverage

- If integrated CCS from electricity production is a 4 link chain:
 - Electricity production
 - Capture
 - Transport
 - Storage
- 2 and 3 link chains have been demonstrated over 1Mt CO₂ per year

www.ieagreen.org.uk
Learning From Projects - preliminary and not yet complete

- Commonalities
- Areas for additional collaboration
- Areas for additional future consideration
- Themes in key learning points
Commonalities

- Injectivity
 - Very important
 - Multiple examples of issues and solutions
- Material corrosion
 - Less problems than expected
- Seismic
 - Effective for monitoring the CO$_2$ plume - where it can be used
 - Not quantitative beyond a certain resolution
 - Expensive

www.ieagreen.org.uk
Commonalities cont.

- Electrical conductivity
 - Seen as promising, not yet used commercially
- Microseismic
 - Doesn’t add a lot to monitoring portfolio
- Monitoring overlying layers
 - Very good way of demonstrating seal integrity (Especially to non-experts)
- Downhole sampling
 - Better sampling at reservoir conditions valuable
 - Not yet practiced by many projects
Areas for Additional Collaboration

- Design of a monitoring programme
 - Proving integrity
 - Enough experience to move on from expansive research programmes to start designing commercial monitoring programmes
- Comparison of hydrate experience
Areas for Additional Collaboration cont.

• Injection performance
 • Different issues of impairment
 • Varied experience of injecting into depressurised formations

• Material corrosion
 • Successful management of material selection and corrosion - could reduce costs for future projects
Themes in Key Learning Points

• Effectiveness of monitoring techniques – what to drop and what to develop
• Injectivity – prediction, restoration and enhancement
• Dealing with hydrates
• Performance of materials in CO$_2$ environments
• Well designing, placing, monitoring

www.ieagreen.org.uk
What has not been covered

• More on capture and on regulatory issues

• Commercial gasification processes
 • Have not been reviewed here but offer considerable learning for pre-combustion capture

• CO$_2$ transport by ship
Preliminary Conclusions

- Elements of CCS are operating at large scale
- Integrated CCS is operating at large scale, just not from power plant
- There is a lot that has been learnt from existing projects, but more can be done to share the learning
- CCS industry can build on existing projects’ experience
- Increasing IPR issues will affect sharing learning
IEA Greenhouse Gas R&D Programme

- General - www.ieagreen.org.uk
- CCS - www.co2captureandstorage.info