Model-based Monitoring Design for Determining Plume Stabilization: A Proposed Plan for the Citronelle Geometry

Susan Hovorka
Gulf Coast Carbon Center
Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin
Need for monitoring tools designed to validate closure models

• After closure flow physics dominated by buoyancy and capillary forces
 – Viscous forces no longer relevant because of decreased differential pressure and lead to decreased velocity

• Some jurisdictions require post-closure planning prior to permitting

• Projects may need to close early
What properties lead to most uncertainty during change of flow regime?

• During injection model improvement using monitoring data decreases uncertainty in characterization

• Need modeling now to identify after-injection end uncertainties:
 – Imbibition dominates over drainage
 – Significance of vertical anisotropy increased?
Citronelle MVA geometry

0.2 miles

AOR -300,000 injection over 3 years
Actual: 100,000 tons over 3 years
+50,000

2 degree Dip on dome flank
What to avoid:
Wrong imbibition curve: plume migrates too far

Tank model
WRI 2008 Potential for Rapid or Unexpected post-injection migration

- Combination of geophysical measurements and validated model predictions to satisfactorily demonstrate that the plume will stabilize and does not endanger human health and the environment.

- To rely on this approach, the models would need to be vetted by experts and would need to have been updated, calibrated, and validated through the operational life of a project as well as during the post-injection monitoring period.
EPA Class VI UIC program

• The owner or operator shall monitor the site following the cessation of injection to **show the position of the carbon dioxide plume** and pressure front and demonstrate that USDWs are not being endangered.

• Conduct monitoring as specified in the Director-approved post injection site care and site closure plan for at least 50 years or for the duration of the **alternative timeframe** approved by the Director.
Alternative Time Frame

• A demonstration of an alternative post-injection site care timeframe must include consideration and documentation of:
 • (i) The results of computational modeling....
 • (ii) The predicted timeframe for pressure decline within the injection such that formation fluids may not be forced into any USDWs; and/or the timeframe for pressure decline to pre-injection pressures;
 • (iii) The predicted rate of carbon dioxide plume migration within the injection zone, and the predicted timeframe for the cessation of migration;
 • (iv) A description of the site-specific processes that will result in carbon dioxide trapping including immobilization by capillary trapping, dissolution, and mineralization at the site;
 • (v) The predicted rate of carbon dioxide trapping in the immobile capillary phase, dissolved phase, and/or mineral phase....
A common conceptualization at end injection

4-D Seismic

Modeled plume
Projects observing after closure

- West Pearl Queen
- Nagaoka
- Frio Test
- Ketzin
- InSalah
- CO2-CARE closure case - Sleipner
Timeline

- 2004
 - RST
 - VSP 1 Cross well 1
 - PFT - NETL
 - VSP 2 Cross well 2
 - PFT - Seeper trace
 - CAASSM
- 2005
 - RST
 - RST
- 2006
 - RST
 - RST
 - Workover, squeeze, reperforate deeper
- 2007
 - RST
 - P&A inj well
 - P&A obs well
- 2008
 - P&A inj well
- 2009
 - P&A obs well

Legend:
- Red square: injection
- Green circle: fluid sampling (gas)
- Brown circle: fluid sampling (brine)
First test: Post injection CO$_2$ Saturation Observed with Cross-well Seismic Tomography vs. Modeled
Measurement at a Well:
Saturation logging (RST) Observation well to measure changes in CO₂ saturation – match to model

Shinichi Sakurai, Jeff Kane, Christine Doughty
Frio Time Lapse VSP: Reflection

Pre Injection
July 2004

Post Frio-I; Pre Frio-II
November 2004

Post Frio-I and Frio-II
May 2009

1600 tons
2004

300 tons
2006
January 2006, attempting to produce the CO$_2$ back – no success. CO$_2$ is underground but cannot be produced
Production Test – end of Frio 1

• Produced CO₂ from the “C” sand in the injection well at month 16 after the end of injection.
• Wellbore filled with gas-phase CO₂, with atmospheric pressure at wellhead. Brine at 100 m = approximate original pressure in zone, no flow of gas or brine.
• Swabbing the well to produce brine decreased pressure about 14 bars well produced brine and CO₂ under weak gas lift
• The ratio of water to gas was 13,600 to 1
• CO₂ was produced at an average of 0.17 tons/hour, but the rate did not decline during the one day production period.
• Post injection leakage risk small
End injection

- Green: Mobile CO₂
- Blue: Residually trapped CO₂
- Black: Water
Post injection fluid mobility

Injection well: Critical sample point

- Mobile CO\(_2\)
- Residually trapped CO\(_2\)
- Water

1X injection period
Post-injection fluid mobility

2X injection period

Mobile CO₂
Residually trapped CO₂
Water
CO2 CARE

• As uncertainties reduce, predictive capability improves, but focus must still be maintained on the less likely ‘end-member’ model scenarios to avoid the possibility of unexpected or divergent future outcomes

• At site abandonment, predictive models calibrated by monitoring data can reduce the uncertainty envelope sufficiently for unexpected or divergent outcomes to be ruled out
What to avoid:
Wrong imbibition curve: plume migrates too far
Model using change in gas saturation at injection well as monitoring point post injection

Hysteretic model

Non-hysteretic model

The plume size 10 years after end of injection

Mehdi Zeidouni
CO\textsubscript{2} – soluble conservative tracer 1 placed 6 months before project end.

Tracer 2 placed 1 month before project end.

Tracer 3 placed 1 week before project end.
CO$_2$-soluble conservative tracer return to injection well under gravity

Hysteretic

Non-hysteretic

Mehdi Zeidouni
Conclusions

- Need for monitoring tools designed to validate closure models
- Some jurisdictions require post-closure planning prior to permitting
- Projects may need to close early
- Value of injection well as closure monitoring point