Demonstration of packed bed CLC of syngas using ilmenite as oxygen carrier

Maria Ortiz, Martijn van Zanten, Paul Hamers, Fausto Gallucci, Martin van Sint Annaland

> Technische Universiteit Eindhoven University of Technology

1 324 13.

Where innovation starts

T

CHEMICAL-LOOPING COMBUSTION

Reduction	(CO, H ₂) + 2 Me	0	2 Me + CO ₂ + H	l₂O ∆H _r
Oxidation	O ₂ + 2 Me	\rightarrow	2 MeO	ΔH_{o}
Total	(CO, H ₂) + O ₂		$CO_2 + H_2O$	$\Delta H_{c} = \Delta H_{r} + \Delta H_{o}$

CLC in power cycles

To achieve competitive energy efficiencies :

• Operating conditions of gas turbines: T=1200 °C and P=20 bar

Interconnected fluidized bed reactors

- Continues hot air production
 Proven technology
- Technological challenging gas/particle separation and loop sealing at high
 - pressures
- **X** Transport of the solid

Packed bed reactors

- \checkmark No transport of the solid
- ✓ No gas/particle separation
- **K** High temperature gas switching valves

Solution for high pressure operation

Objectives

To demonstrate the combustion of syngas in a packed-bed CLC reactor at elevated temperatures and pressures

- To analyze the effect of the main operating conditions, such as the syngas composition and pressure
- To validate a unsteady-state 1-D model developed for CLC systems

Oxygen carrier

Ilmenite

Active phase : Fe_2TiO_5 and Fe_2O_3

- Natural mineral
- Cheap material
- High conversion with syngas

Ilmenite pellets

• 75% Norwegian ilmenite + 25% Mn₂O₃

Physical Properties	
Average external diameter (mm)	3,08± 0,2
Average length (mm)	$6,92 \pm 5,0$
Density (kg/m ³)	3600
Grain Porosity (%)	15,43
Mechanical Properties	
Individual particle crushing strength (DaN/mm)	2,91
Attrition (Spence method) %	2,15

Experimental

Lab-scale packed bed reactor

Experimental

Operating Conditions

- 4 kg activated ilmenite pellets
- Flow for reaction: 40 l/min
- Flow for purge: 160 l/min

Reduction

- Fuel: CO+ CO₂ ,H₂+H₂O and syngas
- T = 800 °C
- Time : 60 min

Oxidation

- 100 % Air
- T = 600°C
- Time : 17 min

Fuel composition

Reduction with H₂

30% H₂, 15% H₂O, 55% N₂ Pressure 4 bar

Reduction with CO 30% CO, 15% CO₂, 55% N₂ Pressure 4 bar

Reduction with CO

30% CO, 15% CO₂, 55% N₂ **Pressure 4 bar**

- Delayed breakthrough of CO, so operation • without fuel slip possible
- Temperature decrease
- Heat front visible •

Oxidation

17 min oxidation with 100% Air **Pressure 4 bar 40** L/min

- Small CO₂ peak: carbon deposition •
- Temperature increase •
- Reaction front visible
- After 12 min O₂ breakthrough which is • comparable to reaction front

Effect of the pressure

Pressure 2, 4 and 6 bar

Higher pressure later breakthrough of CO

Reduction 30% H₂ + 40% CO₂ Oxidation 100% Air Increase reaction rate

Results Pressure influence

Pressure 2, 4 and 6 bar 40 L_n/min air

Observations:

Small increase in carbon deposition Increased O₂ consumption due to higher degree of reduction

Reduction with syngas

Pressure 2 bar Syngas composition: 60,7% CO, 22% H₂, 14,6% N₂ and 2,7% CO₂ S/C = 1,5

- Delayed breakthrough curves, so operation without fuel slip possible
- Temperature decrease ۲
- Heat front visible •

Oxidation

17 min oxidation with 100% Air **Pressure 4 bar 40** L/min

- After 8.5 min O₂ breakthrough which • is comparable to reaction front
- Maximum temperature rise = 335°C

Temperature rise during oxidation

• Theoretical temperature rise

$$\Delta \mathbf{T} = \frac{\left(-\Delta \mathbf{H}_{\mathbf{R},i}\right)}{\frac{C_{\mathbf{p},s}\mathbf{M}_{act}}{\omega_{act}^{0}\zeta} - \frac{C_{\mathbf{p},g}\mathbf{M}_{g,i}}{\omega_{g,i}^{in}}}$$

Theoretical Δ **T Ilmenite pellets = 811 °C**

Calculation should include heat capacity of the Inconel liner and thermocouple

$$\Delta \mathbf{T} = \frac{\left(-\Delta \mathbf{H}_{\mathbf{R},i}\right)}{\frac{M_{act}}{\omega_{act}^{0}\zeta} (\mathbf{C}_{\mathbf{p},s} + \frac{V_{liner}\rho_{l}}{V_{s}\rho_{s}} \mathbf{C}_{\mathbf{p},liner}) - \frac{C_{\mathbf{p},g}}{\omega_{g,i}^{in}} \mathbf{M}_{g,i}}$$

Theoretical ∆T Ilmenite + liner = 330 °C Theoretical ∆T Ilmenite + liner + thermocouple = 300 °C

Results Numerical 1D model

- Assumptions:
 - No radial temperature or concentration profiles
 - No temperature difference between solids and gas (pseudohomogeneous)
 - Heat losses through insulation material of cylindrical wall (heat transfer coefficient)
 - Heat capacity of liner and thermocouple are included

Numerical model		
Gas phase:	$\epsilon_g \rho_g \frac{\partial \omega_{g,i}}{\partial t} = -\rho_g v_g \frac{\partial \omega_{g,i}}{\partial x} + \frac{\partial}{\partial x} \rho_g D_{ax} \frac{\partial \omega_{g,i}}{\partial x} + \epsilon_g r_i M_i$	
Solid phase:	$\epsilon_s \rho_s \omega_{act}^0 \frac{\partial \omega_{g,j}}{\partial t} = \epsilon_g r_j M_j$	
Energy balance:	$ \left(\epsilon_g \rho_g C_{p,g} + \epsilon_s \rho_s C_{p,s} + \epsilon_{liner} \rho_{liner} C_{p,liner} \right) \frac{\partial T}{\partial t} = $	
	$-\rho_g v_g C_{\mathrm{p},g} \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \lambda_{eff} \frac{\partial T}{\partial x} + \epsilon_g r_i \Delta H_{\mathrm{R},i} - \alpha \frac{4}{d_r} (T - T_{env})$	
Reaction rate:	Based on TGA experiments	

Model results

Pressure 4 bar Reduction 30% H₂ + 15% H₂O

- Good description of H₂ breakthrough
- Faster cooling down predicted by model

Gas concentration

Model results

Oxidation 100% Air Pressure 4 bar

- Description of O₂ breakthrough curve not totally good
- Good description of temperature profile

Gas concentration

Conclusions

- For the first time CLC with ilmenite in a packed bed reactor has been demonstrated on this scale
- The influence of pressure on the CLC process:
 - increased degree of reduction
 - increased reaction rate
- Numerical 1D model:
 - describes temperature increase during oxidation
 - includes the influence of the Inconel reactor parts predicts breakthrough times well

Thank you for your attention

Maria Ortiz, Martijn van Zanten, Paul Hamers, Fausto Gallucci, Martin van Sint Annaland

TU/e Ein

Technische Universiteit Eindhoven University of Technology

Where innovation starts

Results Reactor dimensions

Results Experiments

Experiment	H ₂	СО	CO ₂	H ₂ O (steam)	Pressure
1	15 %	15 %	15 %		4 bar
2	20 %	10 %	15 %		4 bar
3	10 %	20 %	15 %		4 bar
4		30 %	15 %		4 bar
5	30 %			15 %	4 bar
6	15 %	15 %		15 %	4 bar
7	30 %		15 %		2 bar
8	30 %		15 %		4 bar
9	30 %		15 %		6 bar
10 (syngas)	18.2 %	50.2 %	2.2 %	17.4 %	2 bar
11 (syngas)	18.2 %	50.2 %	2.2 %	17.4 %	4 bar
12 (syngas)	18.2 %	50.2 %	2.2 %	17.4 %	6 bar
13		30 %	40 %		2 bar
14		30 %	40 %		4 bar
15		30 %	40 %		6 bar

Results Pressure influence

- Effects of increasing the pressure:
 - Positive effect on the reaction rate due to increased partial pressures
 - Negative effect on the reaction rate due to decreased diffusivities
- What effect is most dominant?

Results Model results

 Temperature 'bump' at the begin of the bed during oxidation can be explained by partial reduction

Model Input parameters

Model parameter	Value	
Length (m)	$0.92 (0.05 \text{m TiO}_2, 0.82 \text{m ilmenite}, 0.05 \text{m TiO}_2)$	
Diameter (m)	0.063	
Oxygen carrier	$35wt\% Fe_2O_3$ on TiO ₂	
Particle diameter (mm)	3	
Solids bulk density in oxidized state, ε _s ρ _s (kg/m³)	(1-0.592)*(1-0.180)*4386 = 1469	
Gas porosity (m ³ _{gas} /m ³ _{reactor})	0.180	
Mass flow (kg/(m ² s))	0.1786	
Inlet gas composition	30 % H ₂ , 15 % H ₂ O, 55 % N ₂	
T _{gas,in} (°C)	660	
p _{gas,in} (bar)	4	
T _{environment} (°C)	300	
ε _{liner} /ε _{reactor} ρ _{liner} C _{p,liner} (J/kg)	$0.49*7870*599 = 2.3 \cdot 10^6$	
Superficial velocity (40 L_n /min 1100 K and 4 bar) (m ³ /m ² 1/s)	0.28	
Velocity (40 L _n /min 1100 K and 4 bar, porosity) (m/s)	1.5	

