Perspective from Emirates Steel Project/UAE

Dr. Mohammad Abu Zahra
Associate Professor – Chemical and Environmental Engineering
Coordinator of the Institute CCUS Research

CCS Pathways to Commercialisation, November 9th, 2015, London
ABU DHABI CCUS: VALUE DRIVERS

Strategic Gas Demand & EOR

Environmental

Commitment to Abu Dhabi 30% Clean Energy

CCS Global & Regional Leadership

This CCUS Project Will enable future CCS Projects

ADNOC

Gas Liberation and Enhanced Oil Recovery (EOR)

AD Government

CCS Projects

CO₂ injection for EOR

Increased oil Recovery + Domestic gas availability

Regulatory Framework

CO₂ capture and transportation projects at $/MT
Al Reyadah, a Joint Venture between Masdar (49%) and ADNOC (51%)

- The result of years of on-going collaboration between Masdar and ADNOC sparked by the inspiring vision of Abu Dhabi’s leadership

- Al Reyadah is a pioneering initiative and a knowledge hub for Abu Dhabi and the region in CCS technology, and a working platform for future CCS projects
ESI CCUS PROJECT TECHNICAL OVERVIEW

CO₂ Source (from ESI Steel Facility)

CO₂ Compression & Dehydration

CO₂ Transportation

CO₂ Injection in Rumaitha & Bab fields
• CO₂ is generated through the Process of Direct Reduced Iron (DRI)
 – Methane Gas is reformed to a H₂ & CO Syn Gas
 – Iron Ore (Fe₂O₃) is reduced to Iron (Fe) in reactors – producing CO₂ and H₂O waste
 – CO₂ is removed via a traditional MEA Amine Absorption System
 – CO₂ rich waste stream (>99% dry) is available for the CCS Project
ESI Direct Reduced Iron (DRI) Process

- Fuel → Reformer → Reducing Gas
- Iron Oxide → Reactor
- Gas → Recycle
- CO₂ separation
- CO₂ released to atmosphere
- Redirect CO₂ for Utilization

- DRI
- CO₂ Treatment & Compression
- Transport to Oil Wells
- CCS Facility & Pipeline
- EOR
• Sized for 800,000 TPA CO₂ (98% min purity) = 41.5 MMSCFD
• LP Compression:
 – Integrally geared 6 Stage Centrifugal Compressor (0 – 41barg)
• Mol Sieve dehydration system
 – Reduce water content to 20lb/MMSCF
• HP Compression:
 – Reciprocating 2 Stage Compressor (35 – 238barg)
• Custody Mass Transfer Meter
 – Coriolis Meter complete with Gas Chromatograph and Multiple Moisture Analysers
• Utilities:
 – Electrical Substation transformers/switchgear for 25MW
 – Control Room & Maintenance Warehouse
 – Air system
CO₂ COMPRESSION FACILITY - LOCATION
CO$_2$ TRANSMISSION PIPELINE - LOCATION
CO₂ as an EOR agent has been endorsed:
 - Success of the ESI CCS Project and Rumaitha / Bab Injection are key to future development.
CO₂ capture linked to ADNOC field demand and performance;
Whilst preliminary, the EAA CCS Value Proposition study forecast a growing CO₂ demand in the next 25-30 years, based on ADNOC estimations.
Two new CCUS projects have been identified and currently in the FEED phase.
Future potential for clean coal!
Thank you

Dr. Mohammad Abu Zahra
Associate Professor
Chemical Engineering
mabuzahra@masdar.ac.ae
+971 2 810 9181
• Pipeline:
 – 8” X65 API5L carbon steel buried pipeline designed for 245 barg
 – 2 Block Valve Stations
 – Remote isolation and maintenance blowdown facilities
 – Launching / Receiving facilities for Pipeline Scrapper
 – Telecoms, SCADA, CCTV and Leak Detection running over buried fiber optics

• Rumaitha Metering Station:
 – Custody Mass Transfer Meter (Coriolis Meter), complete with Gas Chromatograph and Moisture Analyser
 – CO$_2$ transferred to ADCO in Rumaitha