

Emission measurements at Dong's pilot plant for CO₂ capture in Esbjerg

EU Project CESAR

Prepared by N. Aas, Statoil; presented by E. da Silva, Sintef

Overview

- Background to the CESAR project
- Dong's facilities in Esbjerg
- MEA campaign and emission sampling
- CASTOR/CESAR pilot plant flow diagram
- Compounds of interest
- Results from the emission measurements
- Results from the liquid analysis
- Conclusions
- Acknowledgement

Background to the CESAR project

- CESAR aims for a breakthrough in the development of low-cost post-combustion CO₂ capture technology to provide economically feasible solutions for both new power plants and retrofit of existing power plants which are responsible for the majority of all anthropogenic CO₂ emissions.
 - The primary objective is to decrease the cost of capture down to $15 \notin tCO_2$.
- CESAR builts on the findings from CASTOR.

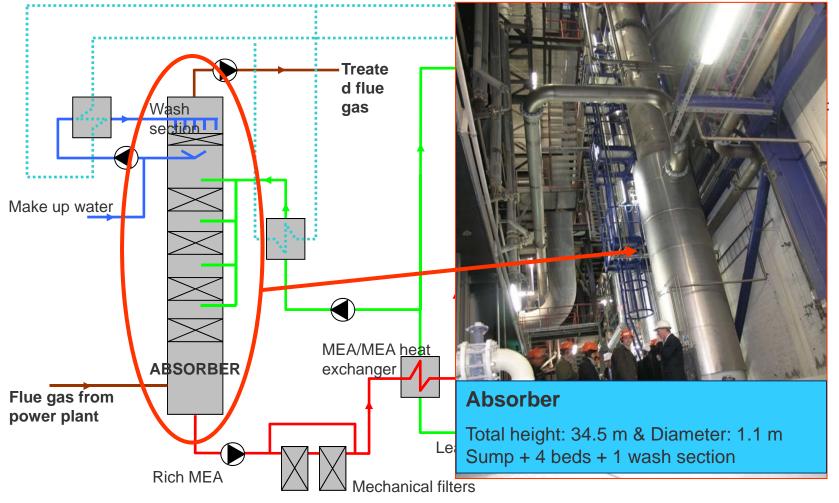
Esbjerg Power Station (ESV)

- 400 MW_e pulverized bituminous coal
- •High dust SCR deNO_x plant
- 3 zones cold-sided ESP
- Wet limestone FGD (saleable gypsum)

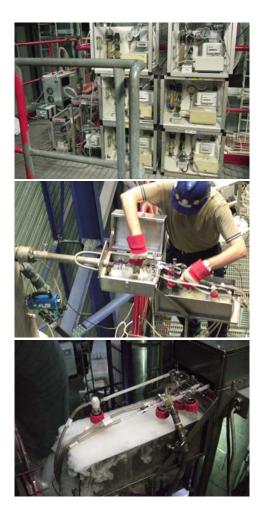
CASTOR Pilot Plant Specifications

- Pilot plant erected and commissioned during 2005
- Design of pilot plant based on a commercial CO₂ production plant (MEA)
- Pilot plant operates on a slip stream taken directly after the wet FGD
- Design flue gas conditions: ~47°C saturated, <10 ppm SO₂, <65 ppm NO_x,
 <10 mg/Nm³ dust

Parameter	Design value
Flue gas capacity	5000 Nm³/h
CO ₂ production (at 12% CO ₂)	1000 kg/h
Absorption degree	90%
Max solvent flow	40 m ³ /h
Max stripper pressure	2 bar _g
Max steam pressure	3.5 bar _g



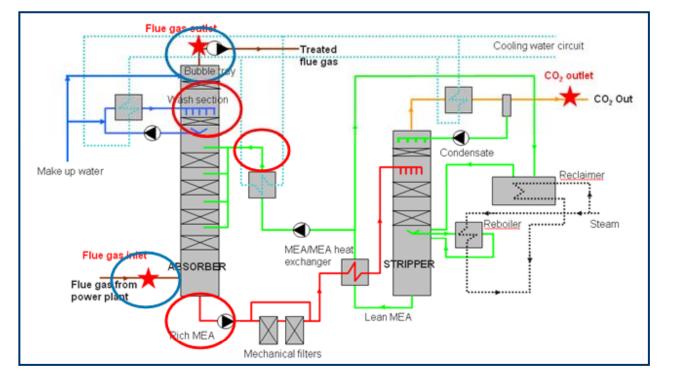
Esbjerg Pilot Plant Absorber


. . .

.

MEA campaign and emission sampling

- A test campaign using MEA was run during the spring of 2009.
- Emission sampling was carried out on the 10th-11th June, after a test run time of 700 to 800 h.
- Eurofins was responsible for emission sampling and measurements.
- Sampling was done isokinetically using liquid or solid absorbents.
- The analytical methods used for the chemical analysis were standard reference methods (ISO, VDI, MEL etc).



CASTOR/CESAR Pilot Plant Flow Diagram

Blue: gas samples Red: liquid samples ★ : sampling points CASTOR

Compounds of interest

Gaseous phase:

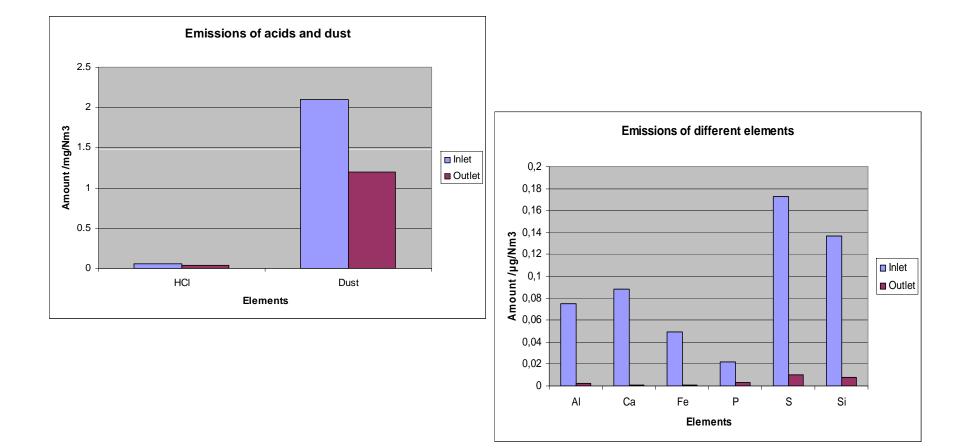
- MEA, DEA
- Aldehydes
- Alkylamines
- Acetamide
- Ammonia

- Flue gas components like H₂O, TOC, VOC
- Gas velocity measurement
- Gas volume measurement

Liquid phase:

- MEA, DEA
- Aldehydes
- Alkylamines
- Acetamine
- Ammonia
- pH
- Metal content
- Heat stable salts

Results from the emission measurements 1


Compound	Unit	Inlet absorber	Outlet absorber	Outlet abs. after water wash
MEA	mg/Nm3	<0.1	0.7	<0.3
DEA	mg/Nm3	<0.2	<0.3	<0.2
Formaldehyde	mg/Nm3	<0.1	0.7	<0.1
Methylamine	mg/Nm3	<0.2	<0.3	<0.2
Acetamide	mg/Nm3	<0.6	<1.0	<1.0
Ammonia	mg/Nm3	<0.1	23	20

.

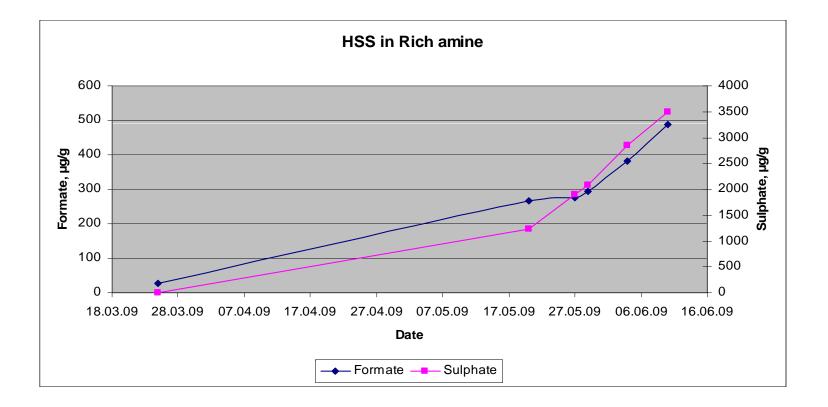
Results from the emission measurements 2

Comparison of emissions from CASTOR and CESAR

Compound	Unit	CASTOR	CESAR
SO2	mg/Nm3	<0.2	1.5
VOC	mg/Nm3	12	4.1
Ammonia	mg/Nm3	25	23
MEA	mg/Nm3	<0.02	0.7
Formaldehyde	mg/Nm3	0.059	1.1
02	% dry	7.5	6.9
NOx	mg/Nm3	73	34.4

Results from the liquid analysis 1

mg/l	35 000
mg/l	#
mg/l	6.4
mg/l	<0.3
r r	ng/l ng/l


#no measurement due to interference from MEA

.

Results from the liquid analysis 2

Conclusions

- Emission measurements have successfully been carried out during the MEA test campaign at the Esbjerg plant.
 - Pioneering work!
- The degradation products typical of oxidative degradation of MEA have been found in both the liquid and the gaseous phase.
- The water wash works well in that it reduces the amount of MEA and formaldehyde in the emitted flue gas.
- The bubble cap has a positive effect on the emissions in that it reduces the amount of MEA and formaldehyde in the flue gas leaving the absorber.
- The absorber has a positive effect on the total emissions as it reduces the amount of metals, dust and SO₂ in the flue gas leaving the absorber.

Thank you

.