Biomass and CCS
Global potential and GHG accounting

Jasmin Kemper
Project Officer
IEA Greenhouse Gas R&D Programme

14th Annual APGTF Workshop:
'1VS' Conference Centre, Westminster, London
12th - 13th March 2014
Carbon balance of different energy systems

- Positive: Fossil fuels
- Less positive: Fossil fuels with CCS
- Neutral to slightly positive: Renewable energy
- Neutral to slightly positive: Bio-energy
- Neutral to negative: Bio-energy with CCS

Koornneef, ECOFYS 2010
Bioenergy pathways & sources of CO₂

Growth and Harvesting of feedstock

- Forest products
- Short-rotation energy crops
- Microalgae
- Biogenic waste

Fuel use (transport; equipment etc)

CO₂(fossil)

CO₂(biogenic)

Conversion processes

- Biological processing
- Gas-to-liquids conversion
- Gasification
- Shift and capture
- Co-firing with coal
- Dedicated combustion

End products

- Liquid biofuels
- Chemical products
- Hydrogen
- SNG combustion
- Hydrogen combustion
- Electricity and heat

Uptake of CO₂ from atmosphere

Carbon Counts 2014 (adapted from Rhodes and Keith, 2005)
Recent work

- IEAGHG studies:
 - „Potential for biomass and carbon dioxide capture and storage“ (Ecofys, July 2011)
 - „Potential for biomethane production with carbon dioxide capture and storage“ (Ecofys, September 2013)
 - „Biomass and CCS – guidance for accounting for negative emissions“ (Carbon Counts, publication in progress)

- Joint Taskforce on Bio-CCS
 - „Biomass and CO₂ Capture and Storage“ (EBTP & ZEP, 2012)

http://www.ieaghg.org/publications/technical-reports

Potential for Bio-CCS: Study methodology

- First order assessment of potential for Bio-CCS in 2030 & 2050
- Considering various levels of potential:
 - Technical Potential: Potential that is technically feasible and not restricted by economic limitations
 - Realisable Potential: Technically feasible and takes future energy demand and scenarios for capital stock turnover into account.
 - Economic Potential: Potential at competitive cost compared to alternatives.
- Six technology options selected for detailed analysis:
 1) PC-CCS co-firing
 2) CFB-CCS dedicated
 3) IGCC-CCS co-firing
 4) BIGCC-CCS dedicated
 5) Bio-ethanol advanced generation
 6) FT biodiesel
Sustainability criteria

- Sustainability criteria ‘strict’
- Factors include:
 - Labour conditions
 - Protection of areas with high ecological, historical or cultural value
 - Food prices and security
 - Avoidance of direct and indirect land use change (dLUC & iLUC)
 - Water supply and quality
 - Land rights of local communities
- Competition for land (and food prices) as well as dLUC/iLUC are key areas of debate.

Adapted from Dehue 2006
Energy potential for Bio-CCS

The chart shows the energy potential in EJ/yr for different technologies and years, including PC-CCS co-firing, CFB-CCS dedicated, IGCC-CCS co-firing, BIGCC-CCS dedicated, BioEthanol, and FT biodiesel. The y-axis represents the energy potential in EJ/yr, ranging from 0 to 140.

The chart includes the following categories:
- **Technical potential (primary energy - biomass)**
- **Technical potential (final energy - biomass and coal)**
- **Realisable potential (final energy - biomass and coal)**
- **Economic potential (final energy - biomass and coal)**

The data is presented for the years 2030 and 2050.
Energy potential for biomethane routes
Negative emissions potential for Bio-CCS

- TP up to 10 GtCO$_2$eq/yr, significant cp. to IEA scenarios
- EP up to 3.5 GtCO$_2$eq/yr (~1/3 of TP)
- IGCC, BIGCC and FT biodiesel most promising
- CO$_2$ price 50 €/t
- Co-firing shares 30% in 2030, 50% in 2050
- Numbers not additive, assessment route-by-route
Negative emissions potential for biomethane routes

- TP up to 3.5 GtCO$_2$eq/yr, smaller than previous routes
- Significant potential only for gasification & AD (EC & AR)
- EP up to 0.4 GtCO$_2$eq/yr, only fraction of TP
- Gasification & AD (MSW & S/M) most promising
- Only economically viable at natural gas prices over 11 €/GJ and CO$_2$ prices of at least 20 €/t (except AD MSW & S/M @ 6.7 €/GJ)

EC & AR = energy crops & agricultural residues
MSW = biogenic municipal solid waste
S/M = animal manure / sewage sludge
Drivers & barriers for Bio-CCS

- CO\(_2\) price
- Level of maturity of some Bio-CCS technologies
- Reliable supply of low-cost, sustainable biomass
- More positive public perception than Fossil-CCS
- Existence of suitable infrastructure
- Presence of CCUS options
Accounting for negative emissions from Bio-CCS

GHG schemes & accounting rules reviewed:

- 2006 IPCC Guidelines
- Kyoto Protocol CDM
- Kyoto Protocol JI
- EU ETS
- EU RED
- EU FQD
- US GHGRP
- California ETS
- California LCFS
- Australia CPM
Recognising & attributing negative emissions

<table>
<thead>
<tr>
<th>Scheme</th>
<th>CCS</th>
<th>Biomass growth/harvesting/combustion/processing</th>
<th>dLUC/iLUC</th>
<th>Life cycle emissions</th>
<th>Negative emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 IPCC Guidelines</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>EU ETS</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>EU RED/FQD</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>GHGRP</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>California ETS</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>California LCFS</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Australia CPM</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>CDM/JI</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Recognising & attributing negative emissions

Almost all reviewed schemes allow for negative emissions, except the EU ETS and the Australia CPM.

- **EU ETS**
 - Only “fossil carbon” emissions can be deducted from GHG inventory
 - Installations exclusively using biomass are exempted
 - Options to address these shortfalls:
 - Amending the EU ETS MMR to include biogenic CO₂
 - Proposing new monitoring & reporting guidelines for Bio-CCS

- **California ETS**
 - Does not allow for negative emissions as an appropriate quantification methodology for CCS does not exist yet within the scheme
Rewarding negative emissions

Benefits of negative emission technologies:
- Offsetting the more difficult to abate emission sources
- Reducing the overall cost of mitigation
- Offsetting legacy or historical emissions
- Putting a price ceiling on CO_2 emissions reductions

Considerations for rewarding appropriately:
- Level of reward for negative emission technologies
 - Potential dLUC/iLUC and sustainability impacts of bioenergy
 - Potential for carbon leakage

The term “negative emission“ elicits the idea of a „double dividend“:
1) Zero emission from the biomass part
2) Negative emission from the CCS part
Rewarding negative emissions

Challenges for incentivising Bio-CCS:

- Debate whether negative emissions should be given additional subsidies or a double credit per tCO$_2$ captured and stored
- Benefit from biomass is typically forgone under certain schemes, as it is inherently included in the baseline
 - Bio-CCS competes on a per tCO$_2$ reduction basis with other options

Approaches for rewarding appropriately:

- Pooling
- Crediting system
 - Domestic or community offset projects (DOP/COP) under EU ETS
 - Scope for the use of JI under EU Effort Sharing Decision
Land use change effects

Concerns related to C stock changes caused by LUC:

- EU ETS, California ETS & EU RED/FQD are believed to accelerate the clearing of forests in developing countries
- Assymmetry between GHG and AFOLU accounting rules

Two core challenges for measuring dLUC/iLUC:

- Lack of data
- Reporting requirements

Two approaches exist to address these issues:

- Quantitative approaches
- Qualitative approaches
Land use change effects

Significant controversy has arisen regarding the promotion of biofuels in jurisdictions such as the US and EU.

- Bioenergy can be imported into regulated jurisdictions and GHG benefits accrued without consideration of upstream emissions and dLUC/iLUC effects (e.g. under EU ETS)
 - Effect of energy crop cultivation on:
 - Land degradation
 - Loss of C stocks as a result of related LUCs

- Robust monitoring system for LULUCF and REDD needed
- At present these are patchy and poorly implemented
- LCFSs and California ETS are exceptions
Conclusions & recommendations

- Bio-CCS has significant potential for negative emissions
- Challenges for Bio-CCS accounting & rewarding:
 - Sustainability of biomass
 - Emissions along the value chain
 - Direct and indirect land use change
- Discussions regarding support measures for Bio-CCS should address dLUC/iLUC and other sustainability issues
 - Creditability of negative emissions and GHG accounting schemes
 - Be mindful of the parity of treatment: biomass vs. fossil fuels
- Assessment and amendment of GHG accounting rules with regards to Bio-CCS is needed
 - Might result in complex political process
- Competitive environment for Bio-CCS
- Further research & development of policy recommendations
Thank you, any questions?

Contact me at: jasmin.kemper@ieaghhg.org

Website: www.ieaghhg.org
LinkedIn: www.linkedin.com/groups/IEAGHG-4841998
Twitter: https://twitter.com/IEAGHG