Direct Reduced Iron (DRI) and CO₂ Capture
(Review of Current State of the Art)

Stanley Santos
IEA Greenhouse Gas R&D Programme

Meeting with European Commission
13th July 2012
Presentation Outline

• Background
• Gas Based - Direct Reduced Iron
 • Midrex
 • Hyl-III and Hyl-ZR
 • ULCORED
• Hybrid System
 • Corex-DRI Scheme
 • Gasification-DRI Scheme
• Coal Based – Direct Reduced Iron
 • SL/RN
 • ITmk3
 • Others…
Background

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Year</th>
<th>Total</th>
<th>Year</th>
<th>CDRI</th>
<th>HBI</th>
<th>HDRI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>'70</td>
<td>0.79</td>
<td>'87</td>
<td>13.52</td>
<td>'03</td>
<td>38.98</td>
<td>8.64</td>
<td>1.83</td>
<td>49.45</td>
</tr>
<tr>
<td>'71</td>
<td>0.95</td>
<td>'88</td>
<td>14.09</td>
<td>'04</td>
<td>43.54</td>
<td>8.63</td>
<td>2.43</td>
<td>54.60</td>
</tr>
<tr>
<td>'72</td>
<td>1.39</td>
<td>'89</td>
<td>15.63</td>
<td>'05</td>
<td>45.44</td>
<td>8.95</td>
<td>2.60</td>
<td>56.99</td>
</tr>
<tr>
<td>'73</td>
<td>1.90</td>
<td>'90</td>
<td>17.68</td>
<td>'06</td>
<td>48.50</td>
<td>8.60</td>
<td>2.69</td>
<td>59.79</td>
</tr>
<tr>
<td>'74</td>
<td>2.72</td>
<td>'91</td>
<td>19.32</td>
<td>'07</td>
<td>55.89</td>
<td>8.34</td>
<td>2.99</td>
<td>67.22</td>
</tr>
<tr>
<td>'75</td>
<td>2.81</td>
<td>'92</td>
<td>20.51</td>
<td>'08</td>
<td>56.60</td>
<td>8.19</td>
<td>4.24</td>
<td>68.03</td>
</tr>
<tr>
<td>'76</td>
<td>3.02</td>
<td>'93</td>
<td>23.65</td>
<td>'09</td>
<td>52.65</td>
<td>6.93</td>
<td>4.06</td>
<td>64.44</td>
</tr>
<tr>
<td>'77</td>
<td>3.52</td>
<td>'94</td>
<td>27.37</td>
<td>'10</td>
<td>56.69</td>
<td>7.21</td>
<td>6.47</td>
<td>70.37</td>
</tr>
<tr>
<td>'78</td>
<td>5.00</td>
<td>'95</td>
<td>30.67</td>
<td>'11</td>
<td>59.50</td>
<td>7.60</td>
<td>6.22(e)</td>
<td>73.32</td>
</tr>
<tr>
<td>'79</td>
<td>6.64</td>
<td>'96</td>
<td>33.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'80</td>
<td>7.14</td>
<td>'97</td>
<td>36.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'81</td>
<td>7.92</td>
<td>'98</td>
<td>36.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'82</td>
<td>7.28</td>
<td>'99</td>
<td>38.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'83</td>
<td>7.90</td>
<td>'00</td>
<td>43.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'84</td>
<td>9.34</td>
<td>'01</td>
<td>40.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'85</td>
<td>11.17</td>
<td>'02</td>
<td>45.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'86</td>
<td>12.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2011 World DRI Production by Process

Total World Production: 73.3 Mt

<table>
<thead>
<tr>
<th>Process</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDREX</td>
<td>59.9%</td>
<td>59.7%</td>
<td>60.5%</td>
</tr>
<tr>
<td>HYL/Energiron</td>
<td>12.4%</td>
<td>14.1%</td>
<td>15.2%</td>
</tr>
<tr>
<td>Other Gas</td>
<td>0.8%</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Coal-based</td>
<td>26.9%</td>
<td>25.7%</td>
<td>23.6%</td>
</tr>
</tbody>
</table>

Source: Midrex Technologies, Inc.
Background

• **Product**
 - Hot Briquetted Iron (HBI)
 - Cold Directly Reduced Iron (c-DRI)
 - Hot Directly Reduced Iron (h-DRI)

• *In addition to good alternate to scrap, it is a potential raw material input to Blast Furnace could lead to reduction of CO₂ emissions. (i.e. reduced coke, sinter requirement)*
Midrex
(Conventional without CO₂ Capture Option)
Midrex (Conventional with CO₂ Capture Option)
HYL-III (Energiron DR)
Plant Configuration with SMR

- Electricity optimization
- Hot and/or Cold DRI production
- Carbon content: 0.8% - 3.5%, depending on the extent of “in-situ reforming” with NG
HYL-ZR (Energiron ZR-DR)
Plant Configuration without Reformer

- The Scheme w/o Reformer is characterized by the following features:
 - Partial combustion of the reducing gas.
 - “In-situ” reforming of CH₄ in the lower part of the reactor’s reduction zone.
 - Adjustable composition of the reducing gas to control DRI metallization and carbon.
 - Natural gas optimization
 - Hot and/or Cold DRI production
 - Carbon content: 2.0% – 4.0%
CCUS Application
(Currently Operational)

• **Arcelor Mittal – Lazaro Cardenas (Mexico)**
 - HYL-III Technology (4 x 0.5 mtpy c-DRI)
 - Upgraded in 2007 to include CO₂ capture – Sold to food industry (Operational since 2008)

• **Welspun Maxsteel – Raigad (India)**
 - HYL-III (0.9 mtpy DRI/HBI) and HYL-ZR (0.55 mtpy DRI/HBI)
 - Upgrade & New Build in 2006. (Operational since 2008)
 - Capture of CO₂ from HYL-ZR – Sold to food industry.
CCUS Application
(Under Construction or In Planning)

• **Emirate Steel - Abu Dhabi (UAE)**
 - HYL Energiron DR (2 x 1.6 mtpy h-DRI)
 - Upgrade for CO2 Capture for EOR application
 (Expected by 2013/2014)

• **Nucor – Louisiana (USA)**
 - HYL Energiron ZR (1 x 2.5 mtpy c-DRI)
 - Under construction – operational by 2014/2015
 - With CO2 Capture for EOR application
 - Note:
 - Original permit – was to build a BF/BOF integrated steel mill. But due to Shale Gas, Nucor switch DRI plant.
ULCORED Technology

(Information from ULCOS)

- **Claimed to reduce 20% energy consumption as compared to other DRI Technology.**

- **Key Features**
 - 100% use of oxygen instead of air
 - Based on partial oxidation. POX, reactor instead of a reformer
 - With CO shift reactor to convert CO to H₂ and CO₂ – therefore maximise CO₂ removal
 - CO₂ cleaning of the off gas stream after shifter by
 - pressure swing adsorption, PSA/VPSA or amine wash to produce a clean CO₂ for storage and a hydrogen stream to be recycled to the reactor
Coal Based DRI -

- **SL/RN – Rotary Kiln with Rotary Cooler**
 - Status – Commercially Operated
 - Largest Capacity ~0.3 mtpy per module
 - Issue with Pollutant Emissions
 - India (22 units), South Africa, Brazil
 - Not considered viable to incorporate CO₂ capture
SL/RN Process Configuration
Gasifier – DRI Scheme

This scheme is also applicable to
• Midrex Technology
ULCORED Coal Based DRI
COREX-DRI Scheme

This scheme is applicable to:
- Midrex Technology
- HYL Technology
- ULCORED Technology
COG – DRI Scheme

Steam → CO₂ - removal → CO₂ removal → BF Gas → O₂ → DRI

Tail Gas → Ore → COG

H₂O
ITmk3 – Iron Nuggets

Fuel: Coal

Feed: Fine Ore
Concluding Remarks

• *Different CO₂ capture options for production of DRI/HBI or other iron sources to steelmaking has been reviewed.*

• *Expected growth in Gas Based DRI/HBI Production.*

 • As important source of metal alternate to scrap steel in EAF production

 • Could be a good substitute metal input to the Blast Furnace (therefore reducing coke consumption)

• *Growth in coal based DRI/HBI should be expected in India where coking coal supply is limited.*