CO$_2$ Storage Experience in Japan
including Impacts of Earthquakes

Ziqiu Xue (xue@rite.or.jp)
Research Institute of Innovative Tech. for the Earth
Purpose of Nagaoka Pilot Project

- **World CCS Projects (@2000)**
 - **Sleipner** (Norway, Aquifer, Associated CO₂)
 - **Weyburn** (Canada, EOR, Coal Gasification)

- **Nagaoka Project**
 - 1st on-shore aquifer CO₂ injection test

 (Verification of CO₂ Storage in Complex Geology)
Site Selection

Geological Factors

- Continuity of cap rock
- Gentle tilted reservoir
 - Depth (800-1200m),
 - Thickness (>10m)
- No faults within 1.5km²
- Details data for subsurface

Operational Factors

Social Acceptance, Well yard etc.
Overview of the Nagaoka Site

Well Configuration at the Reservoir Depth

- OB-4: Injection Well
- IW-1: Observation Well
- OB-2
- OB-3
- Dip 15°
- 60m
- 40m
- 120m

- Total amount: 10,400 ton CO₂
- Rate: 20~40 ton/day

Reservoir: Haizume Formation (Pleistocene Sand)
- Injec. Layer: Zone 2, 12m-thick
- Porosity: 23%
- Permeability: ave. 7mD (Pump-test)
- Conditions: 48°C, 11MPa
Reservoir Modelling & Simulation
- Summing up all Knowledge of Injection Site -

Reservoir (Haizume Formation)

- Injection point is Edge of Anticline

Based on seismic, logging, and core

Pre-Injection: Evaluate injection plan (Injectivity)
(Reservoir model is build based on the seismic and well data)

During Injection: History matching with pressure & logging data
(Reservoir model is updated by the monitoring data)

Post-Injection: Long-term prediction of CO2 distributions
(Based on the accurate reservoir model considering with trapping mechanisms, long-term prediction is acceptable)
Detection of CO2 breakthrough by time-lapse logging

Elapsed time from 7 July 2003 (day)

Seismic tomography
Well Loggings
- Neutron
- Sonic
- Induction

Injection rate (t-CO₂/day)
Rate; 20~40 ton/day
Total; 10,400 ton

Cumulative amount (t-CO₂)
Sonic Logging @ OB-2

Vp changes

14th 16th 18th 20th 22nd 24th 26th 28th 30th 32nd 34th 36th

End of CO₂ injection (24th)

BL Average up to 13th

37th

Vp: -23%

Post-injection

1.5 2.5 3.5

Vp (km/sec)

1108 1112 1116 1120
Neutron Logging @ OB-2

End of CO₂ injection (24th)

Post-injection

ϕn changes
Induction Logging @ OB-2

Resistivity changes

End of CO₂ injection (24th)

Post-injection

BL
Time Series of Logging Data
(1116.0m @ OB-2)

Breakthrough

Imbibition

Vp (km/sec)

ρ (ohm-m)

SCO₂ max. 63%

SCO₂

CO₂ injection period

Date

2003/01/01
2005/01/01
2007/01/01
2009/01/01
2011/01/01
P-wave Velocity and Resistivity vs CO₂ saturation
(1116.0m @ OB-2)

Joint monitoring is key to understand CO₂ behavior.

SCO₂ max. 63%
Time-lapse Tomography
OB2 – OB3 Section (160m)

Injection Period

Injection Rate: 20~40 ton/day
Total Injection: 10,400 ton

- BLS: Base Line
- MS1: After 3,200t
- MS2: After 6,200t
- MS3: After 8,900t
- MS4: After 10,400t (End Injection)
- MS5: After 9 months
- MS6: After 2 years 9 months

2002/01/01 to 2008/01/01
Seismic Tomography

(Feb. 2003 : BLS)

(Jan. 2004 : MS1)

Max: - 3.0%
(Feb. 2003 : BLS)

8,900 t

(Max: -3.5%)

(Nov. 2004 : MS3)
Time-lapse seismic tomography

Post-Injection: 10,400 t-CO₂

Max. Velocity Change = -3.5%

Velocity Change = (V_{MS4} - V_{BLS}) / V_{BLS}
3D Reservoir Model

\[k_h = (k_x \cdot k_y)^{-0.5}, \quad k_y/k_x = 1.2 \]
Results of Reservoir Simulation

CO2 Distribution at Terminating Injection
Distribution of Injected CO2
(Comparison Reservoir simulation and Tomography)

Simulation Results

<table>
<thead>
<tr>
<th>Anomaly Size</th>
<th>Δh (m)</th>
<th>Δz (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB-3</td>
<td>105</td>
<td>22</td>
</tr>
<tr>
<td>OB-2</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Ray paths: no travel time difference

Garcia (2009)
Evolution of Reservoir Model by History Matching

Reservoir Model → CO2 Distribution Simulation → History Matching

- Bottom hole pressure
- Reservoir pressure
- CO2 Breakthrough time
- Seismic tomography

✓ Accurate Reservoir Model
✓ Anisotropic Permeability
CHDT* (Cased Hole Dynamic Tester)

Fluid sampling from reservoir ➔➔➔ Geochemical Reactions
Formation Fluid Sampling at OB-2

- Depth@OB-2 (mMD) vs Time since injection started (year)
- Resistivity change (%)

- Without CO₂
- Free CO₂
- Dissolved CO₂

1st fluid sampling

2nd fluid sampling

- Injection
- Post-injection
Successful measurement of dis-CO$_2$ & pH under in-situ pressure condition

![Graph showing dis-CO$_2$ and pH measurements at different depths.]

- **1112.0m**: 33 (dis-CO$_2$) and 7.95 (pH)
- **1118.0m**: 241 (dis-CO$_2$) and 5.67 (pH)
- **1119.5m**: 44 (dis-CO$_2$) and 5.01 (pH)

Partial pressure at the reservoir depth:
- **1112.0m**: 0.05 (CO$_2$)
- **1118.0m**: 1.0 (CO$_2$)
- **1119.5m**: 0.2 (CO$_2$)
Concentrations of Ca, Mg, Fe and Si in fluid sampled at 1118.0m are much higher than other two depths.

→ **Neutralization of pH by mineral dissolution**
Calcite shows a tendency of re-precipitate at 1118.0m.

→ Mineral trapping of CO2?
Nagaoka CO$_2$ Storage Project Workflow

Pre-Injection Phase: 3-5 years
- Site selection
- Characterization
- Design

Injection Phase: 10-50 years
- Construction
- Monitoring
- CO$_2$ injection

Post-Injection Phase: 100+ years
- Ceasing injection
- Decommissioning
- Surveillance

Commercialized CCS

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000.12</td>
<td>Nagaoka (pilot test site)</td>
</tr>
<tr>
<td></td>
<td>(2.5 years)</td>
</tr>
<tr>
<td>2003.7</td>
<td>CO$_2$ injection</td>
</tr>
<tr>
<td></td>
<td>(1.5 years) 10,400 Ton</td>
</tr>
<tr>
<td>2005.1</td>
<td>Decommissioning</td>
</tr>
<tr>
<td></td>
<td>(10 years)</td>
</tr>
<tr>
<td>2015.3</td>
<td>Surveillance</td>
</tr>
</tbody>
</table>

The First Case on Post-Injection Monitoring
Field measurements during and post CO$_2$ injection

(Geophysical monitoring)

Elapsed time from 7 July 2003 (day)

Seismic tomography

Well Loggings
- Neutron
- Sonic
- Induction

Earthquake Oct.23, 2004
Earthquake Jul.16, 2007

Rate: 20~40 ton/day
Total: 10,400 ton

Injection rate (t-CO$_2$/day)
Cumulative amount (t-CO$_2$)
Changes in Bottom Hole Pressure

Earthquake Oct.23, 2004
Earthquake Jul.16, 2007

Pressure (MPa)

Injection rate (t-CO₂/day)
Cumulative amount (t-CO₂)

Date

2003/01/01 2004/01/01 2005/01/01 2006/01/01 2007/01/01 2008/01/01
The Mid Niigata Prefecture Earthquake in 2004

Main shock: 23 Oct 2004
M6.8 at 10km depth
Seismic intensity: 7
→ Injection was automatically stopped at the main shock.

Access road was damaged.

CO₂ detector (No leak)

Injection was carefully resumed after confirming safety (6 Dec 2004)
Injection rate: 40t-CO₂/day

(GSJ, 2004 http://www.gsj.jp/jishin/chuetsu_1023/)

For detail: Xue et al. (2006)
3rd Monitoring Network Meeting (Melbourne)
Main Shock: 2004/10/23 17:56 M6.8

- NS (gal)
- Vertical (gal)
- EW (gal)

Max: 705 gal
Sonic Logging (Vp) @ OB-2

Vp (km/sec)

Changes of the Vp

-1.0 0.5

15th 17th 19th 21st 23rd 25th 27th 29th 31st 33rd 35th 37th

14th 16th 18th 20th 22nd 24th 26th 28th 30th 32nd 34th 36th

End of CO₂ injection

BL

Latest

Post-injection

Depth (mMD)

1108

1112

1116

1120

E2004

E2007
Results of Crosswell Seismic Tomography

MS1/BL 3,200t

MS2/BL 6,200t

MS3/BL 8,900t

E2004

MS4/BL 10,400t

MS5/BL 10,400t

MS6/BL 10,400t

E2007
Pilot scale, **Large scale**, Commercial scale (1)

- CO₂ plume size
 (the reservoir scale vs CO₂ plume size, reservoir heterogeneity, permeability anisotropy)

- formation pressure buildup
 (fracture pressure, micro-seismicity, geo-mechanical deformation, controlled injection)

⇒⇒ **Alarm system according to magnitude and number of microseismic events.**
Pilot scale, Large scale, Commercial scale (2)

- CO$_2$ trap mechanism
 (field or lab data of residual CO$_2$ saturation, CO$_2$ dissolution, geo-chemical reaction)

- technical feasibility of CO$_2$ monitoring
 (geo-physical and -chemical monitoring, quantitative evaluation of CO$_2$)

⇒⇒ Same technology but Different geology, Different interpretation. No Silver Bullet!
Large-scale Demonstration: 2012 - Offshore Tomakomai

- **CO₂ source**
 - PSA (Hydrogen production unit)
 - PSA off gas containing CO₂ corresponding to more than 100,000 t/year

- **Capture facility**
 - Activated amine process
 - Capturing CO₂ of more than 100,000 t/year

- **Injection facility**
 - Compressor
 - Injection wells

- **Existing oil refinery**

- **Transportation**
 - Pipeline, approx. 2.5km

- **Reservoir**
 - Sandstone layers of Moebetsu Fm. 1,000~1,200m under the seabed
 - T1 Member of Takinoue Fm. 2,400~3,000m under the seabed

Tanase et al., 2013
Overview of the Tomakomai Project

- **OBC**: Ocean Bottom Cable used for 2D seismic survey and monitoring of micro-seismicity and natural earthquakes
- **OBS**: Ocean Bottom Seismometer used for monitoring of micro-seismicity and natural earthquakes

Tanase et al., 2013
Time Schedule for the Tomakomai Project

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection Well</td>
<td>Engineering, Procurement, and Construction</td>
<td>Site work</td>
<td>Commissioning</td>
<td>Operation</td>
<td>Injection</td>
</tr>
<tr>
<td>Offshore Monitoring Facilities</td>
<td>Observation well for Takinoue Formation</td>
<td>Drilling</td>
<td>Observation well for Moebetsu Formation</td>
<td>Retrofitting</td>
<td>Observation</td>
</tr>
<tr>
<td>Offshore</td>
<td>Onshore seismometer</td>
<td>Installation</td>
<td>Offshore 2D seismic survey</td>
<td>Baseline survey</td>
<td>Baseline observation (Seismicity)</td>
</tr>
<tr>
<td>Offshore</td>
<td>Marine environmental survey</td>
<td>Baseline survey (Seasonal)</td>
<td>Test measurement</td>
<td>OBS Installation</td>
<td>Baseline observation (Seismicity)</td>
</tr>
</tbody>
</table>

Tanase et al., 2013
This project is funded by Ministry of Economy, Trade and Industry (METI) of Japan under the research contract “Development of Safety Assessment Technology for Carbone Dioxide Capture and Storage”.

We thank staff of ENAA, Teikoku Oil Co.(INPEX), Geophysical Surveying Co. OYO Co., and RITE involved in Nagaoka pilot CO₂ injection project.