The Nordic CCS Roadmap

Sigmund Ø. Størset, SINTEF Energy Research
NORDICCS - Nordic CCS Competence Centre
IEAGHG Technical Workshop, Lisbon March 11th
Key Message:
Nordic Collaboration will allow us to meet our joint goal of 20 Mt CO₂ captured and stored by 2050!

- Economy of scale
- Natural Gas Sweetening
- EOR
- Industrial CCS

→ Sustainable use of hydrocarbon resources!
Status of Nordic CCS

• Nordic energy supply has extensive amount of renewable hydro and nuclear power. Nordic electricity generation therefore has relatively low CO₂ emissions:
 • Emissions: Nordic Region: 100 g CO₂ per kWh; Global average: 550 g/kWh; EU average: 430 g/kWh

• Joint Goal of Carbon Neutrality by 2050
 • CO₂ emissions from: transport (30%), offshore oil & gas (29%), industry (25%)
 • CCS important for: industry, natural gas, gas-fired power plants
 • CCS assumed to be a major share of reductions from industry, starting 2040
 • CCS on power plants in combination with offshore EOR by 2027
 • 18 Mt of CO₂ removed by Bio -CCS by 2050
 • Emission from: bio-refineries, steel mills, cement, pulp & paper
 • Industry: aluminium plants 40% of total CO₂
Nordic Climate Targets Cannot be Met without CCS

Includes CCS in Denmark, Finland, Norway and Sweden.
Source: International Energy Agency (2013), Nordic Energy Technology Perspectives, OECD/IEA, Paris

<table>
<thead>
<tr>
<th>Country</th>
<th>CCS for CO2 removal</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industry</td>
<td>Power</td>
</tr>
<tr>
<td>Nordic</td>
<td>ETP 2 DS</td>
<td></td>
</tr>
<tr>
<td>Nordic</td>
<td>ETP CNS</td>
<td></td>
</tr>
<tr>
<td>Toni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tonni:
- Industrial production increases
- Using current technology

Inno:
- Rapid technology development
- More urbanization
Nordic CCS today!

Prediction of CO$_2$ safely injected and stored
Opportunity in Nordic synergies – Significant Economies of Scale
Opportunity in Nordic synergies – Significant Economies of Scale

- Vast storage capacity off coasts of Norway and Denmark
- Large emission sources in Sweden & Finland
- Joint CCS projects could allow scale up
- Reductions in cost due to economies of scale
- Joint transport network - cost saving
Nordic synergies – Accelerating 'Carbon Negative' solutions

- Great biomass energy sources in Sweden and Finland
- Potential for BECCS projects that can go carbon negative!

CO₂ emissions from stationary point sources with emissions > 100,000 tonnes (2009)
EOR is the driver for successful CCS Projects in the USA

Challenge:

- CCS projects are expensive

US/Canadian Solution: EOR

- CCS has been profitable in the USA for 30 years through the use of CO$_2$ for Enhanced Oil Recovery (EOR)
- CO$_2$ is an excellent agent to enhance oil recovery
- All 5 active CCS projects in the USA are EOR projects
 - 3 in natural gas processing, 1 fertilizer, 1 hydrogen production
- 6 EOR projects in the planning in the US and Canada
Enhanced Oil Recovery (EOR) can kick-start Nordic CCS Projects

Opportunities

• Vast storage/EOR capacity off coasts of Norway and Denmark
• New oil and gas infrastructure development ongoing that could accommodate EOR
• EOR can create a market for CO₂ that can kick-start CCS in land-based Industry!
 • Cement, Steel, Pulp and paper, Fertilizer plants

Challenges

• Previous Attempts in Denmark and Norway to start CO₂ EOR failed partially due to lack of large enough volumes of CO₂ (2-5 M tonnes per year required)
• Steady supply of CO₂ needed
"Sweetening" the deal for CCS - Case Study

• **Gas Sweetening** to remove CO$_2$ in Norway's natural gas before export to Europe

• New oil and gas fields at Utsira/Barents Sea/Northern Norway have CO$_2$ levels >2.5%

• **Steady CO$_2$ supply** which is necessary to start an EOR project

• **Location** onshore close to ‘source & sink’

• **Economies of scale** significant for volumes of CO$_2$ captured of up to 2-3 Mt/year
Case: Skagerak industry cluster

Capture sites:
- Esso refinery, Norway
- Norcem cement plant, Norway
- Preemraff refinery, Sweden
- Borealis chemical plant, Sweden
- Portland cement, Denmark
- Nordjyllandsverket, Denmark

Transport: via ship

Hub:
- Kårstø, Norway
- Hirtshals, Denmark
 - Location chosen closest to first capture site

Storage: Utsira, Norway or Gassum, Skagerak
Cost of different NORDICCS Case Scenarios
- \textit{N}^{th} \text{ of a kind (NOAK)} Capture Technology
How do we Realize Deployment?

• Utilization of CO₂ for EOR storage projects to enhance oil recovery from oil and gas production
 • Increases lifetime and recovery of oil fields – a goal in itself.
 • Creates a market for CO₂ -> Lower cost industrial CCS projects
• "Economy of Scale" from Nordic collaboration results in lower cost CCS projects
 • Joint hubs and storage results in savings in:
 • infrastructure investments & operational expense, risk management
• Changes to the European Carbon Market are necessary for industrial CCS
 • Bio emissions should count
 • Incentives/legislation needed
 • CCS Certificates for producers
 • Feed in Tariffs, Emission Performance Standards, Strengthening ETS
• Risk Distribution Necessary
 • Government support for the first implementations to reduce risk
 (CAPEX & OPEX)
Prediction of CO₂
safely injected
and stored

10 mill t/year

Sleipner

Snøhvit

Scenario 1
As is

Sleipner - Photo: Harald Pettersen - Statoil
Melkøya - Photo: HELGE HANSEN - Statoil
Photo: Store Norske Spitsbergen Kulkompani AS
Norcem Brevik - Norway - Photo: Norcem
Østrand pulp mill
Prediction of CO$_2$ safely injected and stored
Prediction of CO₂ safely injected and stored
Plans for the Update

• Since the Oct 2013 issuance of the Nordic CCS Roadmap 7 detailed CCS case studies have been performed in the NORDICCS project
• Results from the Case studies including technology assessments and cost data will be included in Version 2 of the Roadmap to be issued in Oct 2015:
 – Natural Gas Sweetening project, generic location, Norway
 – Reykjavik Energy plant, Hellesheidi, Iceland
 – Norcem, Brevik, Norway
 – Generic steel plant northern shore of the Gulf of Bothnia, Finland
 – SCA Östrand pulp mill, Sweden
 – Amagerværket, Copenhagen, Denmark
 – Preem Petroleum, Lysekil, Sweden
• Section on framework conditions will be updated to include recent developments & policy changes, 2030 Goals of last week etc.
• A partner workshop will be held in early 2015 for input to roadmap
This work is supported by the NORDICCS Centre, performed under the Top-level Research Initiative CO$_2$ Capture and Storage program, and Nordic Innovation.

The authors acknowledge the following partners for their contributions: Statoil, Gassco, Norcem, Reykjavik Energy, CO$_2$ Technology Centre Mongstad, Vattenfall and the Top-level Research Initiative (Project number 11029)

NORDICCS Centre Contact Information: Dr. Nils A. Røkke, Vice President, SINTEF, Nils.A.Rokke@sintef.no

CONTACT NORDICCS Roadmap: Marit.Mazzetti@sintef.no

Roadmap can be found here: http://epapir.fagtrykk.no/Web/sintef/nordiccs/