Feasibility Study of the CCS Deployment to Australia by Use of Oxyfuel Technologies

3rd Oxyfuel Combustion Conference
9-13 September 2013

Takashi Kiga, Takahiro Tanaka, Terutoshi Uchida, Akihiro Komaki, Toshihiko Yamada, Naoki Fujiwara (IHI Corp.) and Chris Spero (CS Energy)
Feasibility Study of the CCS Deployment to Australia by Use of Oxyfuel Technologies

- Background & Initial Approach of FS
- Power Plant
 - Specifications
 - System Flow Diagram
 - Plant Layout
 - Performances
- CO₂ Pipeline Routing
- Cost Evaluation
 - Levelized Cost of Electricity
 - Utilization of Gases
 - Utilization of Water
 - Economy
- Conclusions - Passage to 500MW Oxyfuel-
Features of Oxyfuel Technology

- Many reports indicate Oxyfuel is the cheapest among three capture options,
- The higher is the thermal efficiency, the lower is the energy penalty,
- Main energy source to capture CO\textsubscript{2} is electricity and the impact to conventional power plant system is small,
- Huge amount of nitrogen and water can be obtained as byproduct,
- Sulfuric acid or gypsum can be obtained as byproduct if FGD is not necessary to be installed to normal power stations in the subject area,
- SCR and ammonia are not needed because NO is automatically decomposed in the boiler furnace, and
- There will be no other toxic emissions to the atmosphere than air firing.
Features of Australia

- 94% of primary energy is fossil fuel, 70% of electricity is produced by coal, and per-capita CO₂ emission is relatively high like US or Canada,
- Very positive about CO₂ reduction; carbon pricing, regulations, GCCSI, etc.,
- Very supportive to RD&D of CCS; CCS Flagship, Coal21 Fund, ANLECR&D, CO2CRC, etc. Callide Oxyfuel Project is supported by Federal and QLD State government and Australian coal industry,
- There are extensive geological data and steady property management as a country of resources,
- Population is small in a vast area of land, that means a little number of landowners to negotiate about routing pipeline,
- Arid area and lack of water, and
- Coal firing power plants do not have SCR and FGD.
Background of FS (3)

- **Oxyfuel in Australia**

 ✓ The amount of makeup water can be reduced in arid area by utilizing water captured in the process of gas purification. It will be increased when PCC is applied,
 ✓ SCR and FGD should not be installed in the main stream to control NOx and SO2 emissions in air firing, and
 ✓ The Callide Oxyfuel Project is a collaborative project between Australia and Japan and is the biggest one in Australia not only in capacity but also in budget applying CCS technologies to coal-fired power plants.

Because Australia is very suitable country to apply oxyfuel technology and the deployment of the outcome from demonstration projects is vital, we conducted a feasibility study of the CCS deployment to Australia by use of oxyfuel technologies.
The feasibility study was conducted for the following CCS project in Australia:

Subject area: The Southeast of Queensland
Power plant: USC+CCS
 Fuel: Pulverised coal (black coal)
 Output (gross): 1,000MW
 (250MW (oxyfuel)+750MW (capture-ready))
Steam condition: Ultra supercritical with reheat
Cooling system: Dry cooling
CO₂ transportation: Pipeline
CO₂ storage: Wandoan site (Surat basin)
 1 Mtpa from 250MW unit with additional 3 Mtpa in the future

1000MW unit is too large considering;
✓ Near term storage capacity,
✓ Site size (ASU and CPU need a large space), and
✓ Power grid capacity.
Combination of 250MW and 750MW is difficult to operate.

Reduce the output to 500MW
Specifications of Power Unit

- **Ambient conditions**
 - Dry-bulb temperature: 30°C
 - Barometric pressure: 97.5kPa
 - Relative humidity: 42%

- **Cooling System**
 - Dry Cooling

- **Output (Gross)**
 - 500 MW

- **Power Plant Steam Conditions**
 - Main steam pressure (HPT inlet): 25.0MPa
 - Steam temperature (HPT/IPT inlet): 600/600℃

- **Coal Properties**

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorific value(HHV)</td>
<td>MJ/kg, as fired</td>
<td>20.1</td>
</tr>
<tr>
<td>Carbon</td>
<td>wt%, as fired</td>
<td>46.7</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>wt%, as fired</td>
<td>4.0</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>wt%, as fired</td>
<td>0.6</td>
</tr>
<tr>
<td>Oxygen</td>
<td>wt%, as fired</td>
<td>9.7</td>
</tr>
<tr>
<td>Sulfur</td>
<td>wt%, as fired</td>
<td>0.3</td>
</tr>
<tr>
<td>Total moisture</td>
<td>wt%, as fired</td>
<td>12.4</td>
</tr>
<tr>
<td>Ash</td>
<td>wt%, as fired</td>
<td>25.4</td>
</tr>
<tr>
<td>Fuel ratio</td>
<td>-</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Specifications of ASU & CPU

- **Specifications of ASU**
 - Type: Cryogenic
 - Maximum O_2 production: 200t/h x 2 trains
 - O_2 purity: 96.5 vol%

- **Specifications of CPU**
 - Maximum flow rate: 270t/h x 2 trains
 - Gas composition at the inlet:
 - H_2O: 8.1 vol% wet
 - CO_2: 72.84 vol% wet
 - Product:
 - CO_2: Liquid (45°C x 16 MPa(abs))
 - Purity: 99.9%
 - Recovery rate: >98%
Plant Layout (2D)

Laydown Area for New Power Station

ASU
Dry Cooling
Turbine
Oxyfuel Boiler
FGD
CPU

Existing Power Plant

Existing Plant

Copyright © 2013 IHI Corporation All Rights Reserved.
Plant Layout (3D)
Performances of Power Plant

Performances

<table>
<thead>
<tr>
<th></th>
<th>Oxy-firing</th>
<th>Air-firing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross output</td>
<td>MW 500</td>
<td>MW 500</td>
</tr>
<tr>
<td>Net output</td>
<td>MW 345</td>
<td>MW 473</td>
</tr>
<tr>
<td>Gross Thermal Efficiency (HHV base)</td>
<td>% 45.7</td>
<td>% 42.1</td>
</tr>
<tr>
<td>Net Thermal Efficiency (HHV base)</td>
<td>% 31.5</td>
<td>% 39.9</td>
</tr>
<tr>
<td>Auxiliary power consumption</td>
<td>MW 155</td>
<td>MW 27</td>
</tr>
<tr>
<td>CO₂ emission (Net base)</td>
<td>Mtpa 0.0505</td>
<td>g/kWh 20</td>
</tr>
<tr>
<td>CO₂ captured</td>
<td>Mtpa 2.49</td>
<td></td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>t/h 196</td>
<td>t/h 212</td>
</tr>
<tr>
<td>Heat rate (Gross)</td>
<td>kJ/kWh 7880</td>
<td>kJ/kWh 8550</td>
</tr>
<tr>
<td>Heat rate (Net)</td>
<td>kJ/kWh 11412</td>
<td>kJ/kWh 9038</td>
</tr>
</tbody>
</table>
Pipeline length 140km
φ200 for 1Mtpa / φ350 for 4Mtpa
Design Pressure 160bar
Breakpoint is 50AUD/t-CO₂ with public support for CCS facility.
Breakpoint is 85AUD/t-CO₂ without public support.

[Assumptions for LCOE Calculation]
- Economic life time: 30 years
- Plant availability: 85%
- Post-tax nominal WACC (Weighted Average Cost of Capital): 8.7%
- Income tax rate: 0%
- Inflation rate: 2.5% (2.5% x 75% for fuel cost, 4.25% for Labor cost until 2018, then 2.5%)
Utilization of Gases

- **Gas Quantity**
 - About 20% of supplied air is sent to the boiler as purified O_2.
 - About 20% of supplied air is used to regenerate molecular sieves in ASU.
 - About 60% of supplied air can be utilized as gaseous N_2.
 (Usually gaseous N_2 is used for ASU cooling)

- **Conditions for N_2 Utilization**
 - 20% as middle pressure (0.37MPaG) N_2 and 40% as low pressure (0.01MPaG) N_2 can be utilized unless N_2 is used for ASU cooling.
 - Additional power demand for cooling is equivalent for 3-4% of that for air compressor.

- **N_2 Gas Purity**
 - $O_2 < 1$ppm.
Water treatment system is required to utilize condensed water.
Specifications of water treatment system depends on usage of water.
500MW Oxyfuel Power Plant

Electricity
- 345MW

CO₂
- 0.97t/MWh
- 2.5Mtpa
- (85% Availability / 98% Recovery)

N₂
- 2.2t/MWh
- 5.7Mtpa
- (85% Availability / 90% Recovery)

H₂O
- 0.21t/MWh
- 0.54Mtpa
- (85% Availability / 90% Recovery)

Byproducts sales case for mining industry

Coal
- 4702t/d

Flue Gas Treatment
- 1728t/d

H₂O
- 18360t/d

Fracturing
- 18360t/d

Shale Gas Production

Byproducts sales case for chemical plants

Coal
- 4702t/d

Flue Gas Treatment
- 1728t/d

H₂O
- 8040t/d
Conclusions - Passage to 500MW Oxyfuel -

The Callide Oxyfuel Project is a collaborative project between Australia and Japan and is the biggest one in Australia not only in capacity but also in budget applying CCS technologies to coal-fired power plants. Because the deployment of the outcome from demonstration projects is vital, we conducted a feasibility study of the CCS deployment to Australia by use of oxyfuel technologies.

Passage to 500MW Oxyfuel;

- **Better business environment**
 - Public funding system for CCS dedicated facility. (around 500MAUD for 500MW)
 - System to maintain high carbon pricing or Implementation to cover the deficit.
 (e.g., U.K. CfD (Contract for Difference))
 - Reliable, continuous and certain governmental policy and support.

- **Study on technology and manufacturing**
 - Cost reduction targeting on CAPEX.
 (Especially on ASU and CPU)

- **Study on business model**
 - Business scheme to sell electricity and gases by utility company or project body.
 - Innovation of industrial process for fertilizer or chemical products by low price N₂
 (Finding invisible needs)
 - Viewpoint of a N₂ and CO₂ producing plant with a function to supply electricity.
Acknowledgement

This work was supported by New Energy and Industrial Technology Development Organization (NEDO).

Thank you for your attention.