Future oxycombustion systems

*Air Liquide, *Contact persons
Agenda

- Introduction
- 2010 State-of-the-art plants
- Future oxycombustion systems
- Conclusion
Agenda

- **Introduction**

- 2010 State-of-the-art plants

- Future oxycombustion systems

- Conclusion
Air Liquide roadmap toward CO$_2$ capture

Air Liquide is highly involved in oxy-coal technologies development

- **AL is selected by DOE for the 1st full-scale oxyfuel plant**
 - **FutureGen 2.0 (200 MW$_{\text{e}}$)**

- **CPU pilot tested within the CIUDEN and O$_2$GEN projects**
 - in Spain (30 MW$_{\text{th}}$ boiler)

- **Joint studies with Vattenfall**
 - (1 GW lignite plant)
 - and B&W (700 MW sub-bituminous coal plant)

- **Near-commercial scale 30 MW$_{\text{th}}$ burner demonstration with B&W**

- **CPU pilot tested at Callide in Australia**
 - (100 MW$_{\text{th}}$ bituminous coal plant)
Further improvement of oxycombustion systems

- Air Separation Unit (ASU) and CO₂ Processing Unit (CPU) have a strong impact on oxyfuel process efficiency

- There are some development opportunities in the 2015-2020 timeframe
 - ASU & CPU specific energy consumption reduction
 - Oxyfuel process optimization

- Scope of the study has been:
 - Large-scale Oxy-PC power plant
 - High CO₂ purity (>99.9 %-vol) and high capture rates (>90%)
 - Focus on overall plant efficiency improvement (no OPEX/CAPEX trade-off)
Agenda

- Introduction
- 2010 State-of-the-art plants
- Future oxycombustion systems
- Conclusion
Air/Oxy reference plants: based on Vattenfall-Air Liquide 2010 study (1 GW gross)

ASU & CPU designs based on ‘2010 technology’ (Air Liquide commercial offer)

‘High efficiency’ plant design
- Steam data: 280 bar/600°C/620°C
- Pressurized steam lignite drier (+3-4 %-pts)
- Heat recovery below acid dew point (+1 %-pts)

Air-fired reference plant net LHV efficiency: 49.6%
Oxyfuel reference plant simplified process flow diagram:

- Oxyfuel plant net LHV efficiency: 41.9% \(\rightarrow\) Efficiency penalty of 7.7 \%-pts

HR: Heat Recovery
SDA: Semi-Dry Absorption
FGD: Flue-Gas Desulphurization
ASU: Air Seperation Unit
Agenda

- Introduction
- 2010 State-of-the-art plants
- Future oxycombustion systems
- Conclusion
Process simulation basis

- Steady-state simulation of the overall plant (Aspen Hysys software)
CPU heat integration

- Concept 1: CPU heat integration on dry CO$_2$ compression
 - Use of CO$_2$ compression heat for steam cycle condensate preheating
 - CPU steam consumption reduction

→ Plant net efficiency: +0.2 pt
Warm recycle

- Concept 2: Semi-Dry Absorption removal - Warm recycle
 - Alternative to SDA will avoid water injection quenching effect
 - Fully dry sulfur abatement technology
 - Low sulfur coal
 - Secondary recycle temperature increases
 - Heat recovery is increased by 40 MW\textsubscript{th}

→ Net efficiency: $+$0.5 pt
ASU & CPU development

- Concept 3: ASU ‘2015-2020’ design
 - Technology development
 - Advanced cycle design
 - Increased level of integration

 2020 target: 145 kWh/t (w/o int. credit) → + 0.7 pt

- Concept 4: CPU ‘2015-2020’ design
 - Advanced CO₂ membranes
 - REX on Ciuden and Callide pilots
 - Improvement of drying and compression

 2020 target at 90% capture: 120 kWh/t (w/o int. credit) → + 0.4 pt
Hot recycle & Oxygen preheating

Concept 6: Hot recycle
- Secondary recycling at boiler outlet
 - Reduced heat recovery
 - Increased boiler power
- Hot ESP technology

→ Net efficiency: + 0.2 pt

Concept 7: Oxygen preheating
- O₂ preheating at ~300°C against flue gas
 - Reduced heat recovery
 - Increased boiler power
- High temperature gas-gas heat exchanger

→ Net efficiency: + 0.2 pt
Influence of plant design

- No heat recovery below acid dew point
 - No acid corrosion risk
 - Efficiency reduction is higher for the air-fired plant (-0.7 pts) than for the oxyfuel plant (-0.2 pts)

→ **Without** heat recovery below acid dew point, air-oxy efficiency gap is reduced by **0.5 pt**

- Advanced steam cycle
 - Double reheat configuration
 - Ultra-Super Critical (USC) steam cycle

→ **With** advanced steam cycle, air-oxy efficiency gap is reduced by **0.1 pt**
Agenda

- Introduction
- 2010 State-of-the-art plants
- Future oxycombustion systems
- Conclusion
High improvement potential: **+2 pts** on net LHV efficiency

ASU & CPU optimization has strong impact on overall efficiency

Efficiency penalty can be reduced in the **5 pts range**
End of presentation
Thank you for your attention

Acknowledgments to Nicklas Simonsson, Vattenfall R&D AB
Design basis and boundary conditions

Power plant design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main steam pressure</td>
<td>[bar]</td>
<td>280</td>
</tr>
<tr>
<td>Main steam temp.</td>
<td>[°C]</td>
<td>600</td>
</tr>
<tr>
<td>Reheat steam pressure</td>
<td>[bar]</td>
<td>60</td>
</tr>
<tr>
<td>Reheat steam temp.</td>
<td>[°C]</td>
<td>620</td>
</tr>
<tr>
<td>Final feed water pressure</td>
<td>[bar]</td>
<td>310</td>
</tr>
<tr>
<td>Final feed water temp.</td>
<td>[°C]</td>
<td>300</td>
</tr>
<tr>
<td>Condenser pressure</td>
<td>[mbar]</td>
<td>34</td>
</tr>
</tbody>
</table>

Fuel specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHV</td>
<td>[kJ/kg]</td>
<td>8700</td>
</tr>
<tr>
<td>C</td>
<td>[%-wt]</td>
<td>26,3</td>
</tr>
<tr>
<td>H</td>
<td>[%-wt]</td>
<td>1,9</td>
</tr>
<tr>
<td>O</td>
<td>[%-wt]</td>
<td>9,5</td>
</tr>
<tr>
<td>N</td>
<td>[%-wt]</td>
<td>0,3</td>
</tr>
<tr>
<td>S</td>
<td>[%-wt]</td>
<td>0,8</td>
</tr>
<tr>
<td>Cl</td>
<td>[ppm]</td>
<td>90</td>
</tr>
<tr>
<td>F</td>
<td>[ppm]</td>
<td>30</td>
</tr>
<tr>
<td>Ash</td>
<td>[%-wt]</td>
<td>8,1</td>
</tr>
<tr>
<td>Moisture</td>
<td>[%-wt]</td>
<td>53,1</td>
</tr>
</tbody>
</table>

CO2 quality requirement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>> 99,9 %-vol.</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>< 10 ppmv</td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>< 0,1 %-%vol.</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>< 0,1 %-%vol.</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>< 5 ppmv</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>< 5 ppmv⁵</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>< 5 ppmv³</td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>< 5 ppmv⁵</td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>< 5 ppmv⁶</td>
<td></td>
</tr>
<tr>
<td>SO₃</td>
<td>< 5 ppmv³</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>< 5 ppmv²</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>< 5 ppmv³</td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Oxyfuel reference plant - ASU & CPU

- ASU & CPU designs based on ‘2010 technology’ (Air Liquide commercial offer)

Air Separation Unit (ASU)

- 15,300 TPD Oxygen (3-trains)
- Compression heat recovered for BFW heating
- Oxygen preheating at ~200°C, 96.5 %-v purity
- Specific consumption (w/o integ. credit): 160 kWh/t

Cryocap™ CO₂ Processing Unit (CPU)

- 16,000 TPD CO₂ (2-trains)
- CO₂ capture rate: 90%
- No heat integration
- 99,99 %-vol purity, 125 bars
- Specific consumption: 130 kWh/t