Integration of Oxygen-containing Exhaust Gas into the Air Separation Unit of an Oxyfuel Power Plant with Maximised CO₂ Capture Rate
- Process uses matured technologies
- Cryogenic air separation unit (ASU)
- CO₂ capture in gas processing unit (GPU)
- CO₂ capture rate 90%
Constraints of the basic process

- **Reference power plant**
 - Study: reference power plant North-Rhine Westphalia (bituminous coal)
 - Air-fired: $\eta_{\text{net}} = 45.8\%$
 - $P_{\text{el}} = 600 \text{ MW}_{\text{gross}}$

- **Oxyfuel modification**
 - Treated primary recycle by hot ESP and wet FGD
 - Treated secondary recycle by hot ESP
 - Adiabatic ASU with heat integration
 - Preheated O_2: 95 vol% (dry)
 - 2% (w/w) air ingress
 - GPU: partial condensation (externally cooled)
 - 90% CO_2 capture rate, 10% CO_2 leakage with the offgas
 - CO_2 purity: 97 vol% (dry)
 - $\eta_{\text{net}} = 36.9\%$
Process with maximised CO$_2$ capture rate

- PEO Membrane for additional capture
 - Selectivity CO$_2$/N$_2$ 50, O$_2$/N$_2$ 2.8, Ar/N$_2$ 2.8 (T=25°C)
 - CO$_2$ permeance 3 m3(STP)/m2hbar (T=25°C)
- CO$_2$ capture rate 99%, $\eta_{\text{net}} = 36.4\%$
- CO$_2$ from PM is recycled due to low purity and pressurisation
Motivation

- Additional capture process resolves in a net efficiency penalty of 0.5 %-pts.
- Exhaust gas to environment contains 4% of the oxygen supplied by the ASU
- Recycle to ASU can decrease its energy demand
- Increase of net efficiency possible

- Modelling of an exhaust gas recycle to the ASU
- Examine how much of the maximum 4% energy saving at the ASU can be realised
- Membrane and Adsorption not considered for separation, because of low separation selectivity of Ar/O₂
Potential of a O\textsubscript{2} recycle to the ASU

- Estimation of the potential to lower the energy demand of the ASU
- 4\% of the oxygen supplied by the ASU in the offgas

<table>
<thead>
<tr>
<th>Exhaust gas CO\textsubscript{2} in vol%</th>
<th>Exhaust gas N\textsubscript{2} in vol%</th>
<th>Exhaust gas O\textsubscript{2} in vol%</th>
<th>Exhaust gas Ar in vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>52.3</td>
<td>22.7</td>
<td>19.7</td>
</tr>
</tbody>
</table>

99\% CO\textsubscript{2}
- Dual column
- Dual reboiler
- Lox boiler
- Adiabatic compression
- Energy demand
 - 229 kWh/t\textsubscript{O2} (w/o heat integration)
- O\textsubscript{2} capture rate 98.48%
Scenarios for exhaust gas integration into the ASU

- Recycle is on pressure (about 4.6 bar) => 2 MW higher power demand of the GPU
- Constant amount of O₂ and purity in product stream
- Scenario A with direct mixture upstream direct contact cooler
- Scenario B with separate feed to the cold box
Results (dual column)

<table>
<thead>
<tr>
<th></th>
<th>Basic process</th>
<th>A (Dir. Mix with change)</th>
<th>B (sep. feed with change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2 capture rate in %</td>
<td>98.48</td>
<td>97.9</td>
<td>98.27</td>
</tr>
<tr>
<td>Spec. energy demand in kWh/t_{O_2} (w/o heat integration)</td>
<td>229</td>
<td>226</td>
<td>223</td>
</tr>
<tr>
<td>Ar in O_2 product</td>
<td>0.024</td>
<td>0.043</td>
<td>0.029</td>
</tr>
</tbody>
</table>

- **Overall process evaluation (with adiabatic compression)**
 - Benefit for the ASU results in a net efficiency penalty for the overall process for the dual column
Results for dual column

• Integration into ASU
 ▶ Only small benefit for the ASU due to problems of the columns with the high amounts of Ar (increased about 70% compared to basic process)
 ▶ The capture rate is decreased in both scenarios, because the Ar leads to an increased slip of O₂ with the N₂

• Is there a benefit for the overall process with a triple column?
Triple column basic process

- Triple column
- Adiabatic compression
- Lox boiler
- Energy demand
 - 197 kWh/t\textsubscript{O2} (w/o heat integration)
- Expander power used with generator/compander
- O\textsubscript{2} capture rate 97.85%
 - \(\eta_{\text{net}} = 37.4\%\) (CCR 90%)
 - \(\eta_{\text{net}} = 36.9\%\) (CCR 99%)
• Energy demand
 184 kWh/t\(_{O_2}\) (w/o heat integration)
• \(O_2\) capture rate 97.85%
• Exhaust gas into HPC
• \(\eta_{\text{net}} = 37.15\%\) (CCR 99%)
• 0.25 \%-pts. benefit
Overall process net efficiencies

<table>
<thead>
<tr>
<th>Process configuration</th>
<th>Dual Column ASU in %</th>
<th>Triple column ASU in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic process (CCR 90%)</td>
<td>36.9</td>
<td>37.4</td>
</tr>
<tr>
<td>Increased CCR 99%</td>
<td>36.4</td>
<td>36.9</td>
</tr>
<tr>
<td>Exhaust Gas Recycle</td>
<td>< 36.4</td>
<td>37.15</td>
</tr>
</tbody>
</table>
Conclusion and next steps

- Dual column ASU has difficulties with the effective separation of the Ar from the O$_2$
- For the overall process the results show no benefit for a dual column ASU with an exhaust gas recycle
- The triple column benefits from the exhaust gas recycle and can lessen the efficiency decrease of an increased capture rate to 0.25 %-pts.

- Economical evaluation of the offgas treatment with PM and PSA