Evaluation of Global Reaction Mechanisms for CFD Modelling of Oxy-Fuel Combustion

Fredrik Normann

Chalmers University of Technology
Background

Purpose
To obtain information for development of commercial oxy-fuel boilers

Progress of work
- Chalmers 100 kW oxy-fuel unit
- Oxy-CFB combustion
- Series of experimental and modelling studies

Content of work
- Combustion issues
- Emissions (NO_x and SO_x)
- Heat transfer

Present presentation
Evaluation of reduced reaction mechanisms for CH oxidation in CFD simulations

Fredrik Normann
Computational Fluid Dynamics

Complex Geometries
Complex Turbulent Flames
Simplified reaction mechanisms
Limited generalizability
Applicability to oxy-fuel combustion with high CO₂ concentration?

Source: www.hightech.fi

Fredrik Normann
Global Reaction Mechanisms

<table>
<thead>
<tr>
<th>Fuel Oxidation</th>
<th>Intermediates Oxidation</th>
<th>Radical Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_3H_8 + 1.5 O_2 \rightarrow 3 CO + 4 H_2$</td>
<td>$H_2 + 0.5 O_2 \leftrightarrow H_2O$</td>
<td>$O_2 \leftrightarrow 2O$</td>
</tr>
<tr>
<td>$C_3H_8 + 3 H_2O \rightarrow 3 CO + 7 H_2$</td>
<td>$CO + H_2O \leftrightarrow CO_2 + H_2$</td>
<td>$H_2O \leftrightarrow H + OH$</td>
</tr>
</tbody>
</table>

JL

<table>
<thead>
<tr>
<th>Air</th>
<th>Oxy-fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-step</td>
<td>4-step</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

References:
- Jones & Lindstedt, 1988
- Leiser et al, 2007
- Glarborg et al, 2009
- Frassoldati et al, 2009

Fredrik Normann
Mapping of 100 kW Oxy-Propane Flame

Fredrik Normann
Temperature Measurements

- Contour map created entirely from measurement data
- Six measurement positions
- Temperature and Concentration Profiles

Fredrik Normann
3D CFD Model

- Sub-models:
 - k-ε Realizable turbulence model
 - Eddy Dissipation Concept
 - Discrete Ordinates model with a WSGG model for oxy-fuel conditions (grey)

- Flame shape
 - JL predicts a wider and shorter flame than the oxy-fuel derived mechanisms

- Concentration of CO
 - JL and 3-step yield the predictions which are most in line with measured data
Generation of 1D-Model

- Traced a “particle” from the fuel inlet throughout the furnace
- Recorded O$_2$ concentration and temperature

Fredrik Normann
Comparison – CO concentration

- The propane-fired Chalmers 100 kW OF27 flame
- Includes comparison with a detailed scheme
- Path-line data from CFD calculations is used in the PFR model
 - Temperature
 - O₂ concentration
- Large discrepancies between the global models.
Comparison - Reaction Dynamics

Fuel Oxidation

\[C_3H_8 + 1.5 O_2 \rightarrow 3 CO + 4 H_2 \]

CO Oxidation

\[CO + 0.5 O_2 \leftrightarrow CO_2 \]
\[CO + H_2O \leftrightarrow CO_2 + H_2 \]

Fredrik Normann
Conclusion

• There is a significant improvement potential for global oxy-fuel reaction mechanisms and, thus, a need to develop a refined global reaction mechanism.

• Simply adjusting the reaction parameters to compensate for quantitative errors (such as over-predicted CO concentration or combustion temperature) may lead to errors in the reaction dynamics.

• A qualitatively incorrect behavior reduces the generic nature and applicability of the mechanism.

Fredrik Normann
Evaluation of Global Reaction Mechanisms for CFD Modelling of Oxy-Fuel Combustion

Fredrik Normann

Chalmers University of Technology