Operation Experience of Oxyfuel Boiler

T. Yamada, T. Uchida, T. Gotou, T. Kiga (IHI), C. Spero (CS Energy/COSPL)

OCC3

11th September, 2013
Presentation outline

- Project & oxyfuel process overview
- Operation experience of oxyfuel boiler
 > Mode change
 > Heat absorbed in boiler at 30MWe
 > Operation range
 > CO2, NO, SO2, SO3, Carbon-in-ash
- Future test plan
- Concluding comment
Callide Oxyfuel Project Overview

Callide A Power Station
Owned by CE Energy
4 x 30 MWe
Steam 136 t/h at 4.1MPa, 465°C
Commissioned: 1965 - 69
Refurbished 1997/98
Placed in storage in 2002

Scope:
- No.4 Boiler refurbishment
- 2 x 330 TPD ASU
- Oxyfuel combustion Retrofit
- 75 TPD liquid CO₂ recovery

Callide A P/S
QLD
Australia

CO₂ storage area
Brisbane
Callide Oxyfuel Project - Equipment -

Coal feeder & Beater type mill

New burner & existing burner

30MWe ST & Generator
Callide Oxyfuel Process

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation output</td>
<td>30MW</td>
</tr>
<tr>
<td>Coal</td>
<td>Callide coal (High Ash, High Moist. and Low S)</td>
</tr>
<tr>
<td>Boiler inlet O2 concentration</td>
<td>27 vol% wet in oxy mode (Normal operation)</td>
</tr>
<tr>
<td>Boiler outlet O2 concentration</td>
<td>< 3 vol% wet at 30MW</td>
</tr>
<tr>
<td>Supply O2 purity</td>
<td>> 98%</td>
</tr>
<tr>
<td>Target CO2 at stack inlet</td>
<td>55 wet% in oxy mode</td>
</tr>
</tbody>
</table>
Operation Experience

- Stable Air ↔ Oxyfuel mode change
- 3 types of coal: Callide coal, Blend 1, Blend 2
- 30MWe at both air and oxyfuel combustion
- Achievement of target CO2 value with 55wet% (= 70dry%)
- Obtained test results of any parameter with MW, inlet-O2, coal.
- Confirmation for behavior of trace elements (SO3, Hg, etc.)
- Obtained test results of H2O remover bypass operation
- Inspection after 1 year operation from start of commissioning

History of boiler

23 March, 2011 - First fire on fuel oil after retrofit
12 March, 2012 - First oxygen injection to boiler
19 March, 2012 - Successful 100% RFG and oxyfiring
6 Nov., 2012 - Over 1000 hours
23 Jan., 2013 - Over 2000 hours
20 June, 2013 - Over 3000 hours
Combustion Mode Change

< Air ↔ Oxyfuel combustion mode change >

- Air ↔ Oxyfuel mode change with one push button
- Sequence run step by step

Step 1-1 → Step 1-2 → Step 1-3

Step 2-1 → Step 2-2 → Step 2-3

Air Mode (Start – 30MW)

Combustion Mode Change (24 – 30MW)

Oxyfuel Mode (24 – 30MW)
Air and Oxy Process

Air mode

Oxy mode
Combustion Mode Change

Mode change is smoothly operated.

> Boiler outlet O2 is almost constant during the mode change
> 1.5 – 2.0 hours is required for the mode change at this moment.

- Preparation
- O2 supply
- Damper action
- Final step

Air to Oxy
- Preparation
- Final step
- O2 stop
- Damper action

Oxy to Air
- Preparation
- Final step

Air intake damper [%] / RFG damper [%] / CO2 [%] / WB-O2 [%] / Boiler Master [MW] / O2 [%] / O2 Flow [kg/sec]
Boiler water & steam process and structure

Water and steam

- Feed water
 - No. 1 (Bottom) Drum
 - Front wall
 - Front Wall Header
- No. 2 (Top) Drum
 - Convection bank
- Primary SH
 - Secondary SH Header
- Secondary SH
- Output SH Header

Main steam (to turbine)

*1 (De-superheater)

*2

Side elevation of boiler

- No. 2 (Top) Drum
- Secondary SH
- Primary SH
- Convection bank
- Refractory
- Boiler
- Burners
- No. 1 (Bottom) DRUM
30MW operation

Heat balance of the boiler

Air : 30MW
Oxy : 30MW at inlet-O2 of 27%

- Heat absorbed in Oxy is 3 – 4 % smaller. This is because of the effect of heat recovery at FGLPH.
- The rage of heat absorbed at inlet-O2 of 27% is almost same with air.
 Furnace : 80%
 1SH + 2SH : 20%

Heat absorbed at “Furnace” is included the convection bank.
Air Mode

- > 18 to 30MW
- > 3 patterns of mills & burners

Oxy Mode

- > 24 to 30MW
- > 3 patterns of mills & burners
- > Inlet O2 : 27 % at normal operation
- > Various inlet-O2 at 27MW
Coal

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Callide</th>
<th>Blend 1</th>
<th>Blend 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross CV</td>
<td>MJ/kg, ar</td>
<td>17.28 – 19.12</td>
<td>20.59 – 21.91</td>
<td>19.04</td>
</tr>
<tr>
<td>Total Moisture</td>
<td>%, ar</td>
<td>12.2 – 14.1</td>
<td>11.5 – 12.7</td>
<td>11.8 – 12.5</td>
</tr>
<tr>
<td>Proximate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>%, ar</td>
<td>22.2 – 25.6</td>
<td>18.9 – 20.8</td>
<td>23.7 – 24.8</td>
</tr>
<tr>
<td>VM</td>
<td>%, ar</td>
<td>20.4 – 21.9</td>
<td>17.2 – 18.6</td>
<td>21.6 – 21.9</td>
</tr>
<tr>
<td>FC</td>
<td>%, ar</td>
<td>38.9 – 43.1</td>
<td>49.3 – 51.0</td>
<td>41.8 – 41.9</td>
</tr>
<tr>
<td>Ultimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>%, daf</td>
<td>73.5 – 76.7</td>
<td>80.6 – 81.0</td>
<td>76.6 – 77.9</td>
</tr>
<tr>
<td>H</td>
<td>%, daf</td>
<td>3.52 – 3.85</td>
<td>3.76 – 3.84</td>
<td>4.12 – 4.30</td>
</tr>
<tr>
<td>N</td>
<td>%, daf</td>
<td>0.95 – 1.17</td>
<td>1.31 – 1.33</td>
<td>1.38 – 1.44</td>
</tr>
<tr>
<td>S</td>
<td>%, daf</td>
<td>0.31 – 0.41</td>
<td>0.38 – 0.42</td>
<td>0.41 – 0.42</td>
</tr>
<tr>
<td>O</td>
<td>%, daf</td>
<td>18.1 – 23.3</td>
<td>13.4 – 14.0</td>
<td>15.9 – 17.5</td>
</tr>
</tbody>
</table>

Callide coal is mainly used in the operation period and Blend 1 & 2 were used for trace elements measurement, December 2012.
Achievement of target CO2 value with 70dry% at 30MW.

CEMS data (O2, CO2, H2O, NO, NO2, SO2, CO)
Carbon-in-ash & SO3 with various coal

- Lower carbon-in-ash at Oxy
- Product SO3 is higher at Oxy, however SO3 at IDF outlet is low enough.
Summary of oxyfuel operation

- Reliable mode change was achieved.
- Achievement of 30MW operation. Heat balance in the boiler is almost same with air. And the amount of heat absorbed in Oxy is smaller, due to the heat recover at FGLPH.
- CO2 conc. is over 70% at 30MW and is more than targeted value.
- NO in Oxy is decomposed, due to the recirculation.
- Carbon-in-ash in Oxy is lower, due to longer residence time
- SO3 in Oxy is much higher at boiler outlet, however SO3 after fabric filter is less than Detection level.

Most of results of heat absorbed and combustion characteristics are almost same with the results at furnace simulation and pilot-scale combustion test.
Future test plan

- Turn-down test of the boiler
- Shorten the time for mode change
- Exposure test of tube material in the furnace
- In-furnace measurement
- Direct-O2 injection test
- Inspection
Concluding comment

Callide Oxyfuel Project is invaluable opportunity to gather the data and know-how of oxyfuel boiler operation to realize CO2 capture technology and we have to obtain and analyze them towards the commercialization of this technology together with Project Participants.
Callide Oxyfuel Project – Participants

Thank you!

for more information: www.callideoxyfuel.com