Material research with focus of Vattenfalls oxyfuel pilot plant

3rd Oxyfuel Combustion Conference

2013-09-11

Alexander Gerhardta, Pamela Hendersona, Melanie Montgomeryb, Peter Zimmerc, Ina Uhlmannc

aVattenfall BU R&D Projects, Otternbuchtstr. 14-16, 13599 Berlin, Germany
bVattenfall BU Engineering Chemistry, Kopenhagen, Denmark,
cVattenfall BU Engineering Materials, Berlin, Germany
Overview

1. Introduction
2. Vattenfalls material tests at OxPP
3. Test panel analysis from the OxPP boiler
4. OxyCorr project
5. Conclusion
Introduction
Measurements in dry gas after ESP

<table>
<thead>
<tr>
<th></th>
<th>CO₂ Vol%</th>
<th>O₂ Vol%</th>
<th>CO mg/Nm³</th>
<th>SO₂ mg/Nm³</th>
<th>NOₓ mg/Nm³</th>
<th>H₂O Vol. % in flue gas</th>
<th>Fly-ash SO₃ mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-firing</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>1600</td>
<td>300</td>
<td>8</td>
<td>46 + 9</td>
</tr>
<tr>
<td>Oxyfuel</td>
<td>95</td>
<td>6.8</td>
<td>2.5</td>
<td>7000</td>
<td>1600</td>
<td>30</td>
<td>77 + 18</td>
</tr>
</tbody>
</table>
Material tests at Vattenfalls 30MWth Oxyfuel Pilot Plant in Schwarze Pumpe
Purpose and Questions

- Super heater at 580°C, 650°C and 720°C
- Economisers, Water walls
- Low temperature corrosion (70 – 170°C)
- Analysis of deposits formed on super heaters (ash formation)
- ESP, FGD, FGC, recirculation duct, etc
- Identify differences between conventional coal firing and oxyfuel firing
- Different types of probes
- Various burner
- Variation of coal quality (moisture, sulphur content, particle size)
Materials, flue gas composition and fly ash

Materials:
Ferritic, Martensitic, Austenitic and Nickel-base alloys
Examples:
10CrMo910, 13CrMo44, 15Mo3, Super304H, T23, T92, X20, Inconel625, Alloy617, Alloy740, KanthalAPMT, 253MA 347HFG, Sanicro25, VM12, HR3C, AC66
... and so on

Flue gas measurements after ESP (wet) for Oxyfuel
• CO₂ ~ 65% and O₂ < 4 %
• SO₂ ~ 7000mg/m³ (Air ~ 1600mg/m³)
• H₂O ~ 27-29% (Air ~ 8%)
• CO < 200 mg/Nm³, NOₓ < 500 mg/Nm³
• SO₃ in fly ash
 - Air SO₃ 46 ± 9 (mg/kg)
 - Oxyfuel SO₃ 77 ± 18 (mg/kg)
• Otherwise ash composition is similar
• Corrosive species SO₂ and H₂O approx 4 times greater in oxyfuel.
Low temperature gradient probe

Corrosion probes after exposure in plant

SAF2101 at Level 12 (3rd Draft)

15Mo3 at Level 13 (3rd Draft)
Summary on material tests

- Deposit composition and corrosion attack on the high temperature components were similar in both oxyfuel and air firing mode.
- Indication of higher material wastage rate in OxyFuel
- The temperature range where low temperature components are susceptible to corrosion has increased due to oxyfuel firing probably due to increased susceptibility to SO3 dewpoint corrosion.
- There may be more ash deposition in the oxyfuel mode.

Additional observations with some materials
- Increased S-concentration in corrosion front
- Ni-based alloys may form non-protective NiO
- (Cu - containing alloys may form non-protective Cu-crystallites)
- Al-containing materials may form protective oxide (Al2O3) and is not getting carburised
- Super austenitic stainless steels (30%Fe, 30%Ni, 30%Cr) forms protective oxide
Test panel at OxPP
Wall material P235GH (1.0345) with joints made of S235JRG2 (1.0038)
4 part where send to Alstom, BAM, FZJ and VPC
Panel analysis

Air combustion: 3847.5 h
Oxyfuel combustion: 8789.0 h

Steam parameter: 235°C
30.7 bar

- thin irregular corrosion layer
- some corrosion at HAZ
- isolated corrosion craters at inside and outside
OxyCorr - High temperature corrosion test under lignite oxyfuel firing
OxyCorr Project 2009 - 2012

University of Stuttgart, Institute of Combustion and Power Plant Technology (IFK)
Swerea KIMAB AB
Outokumpu Stainless AB, Avesta Research Centre

Vattenfall Research & Development AB
Alstom Power Systems GmbH, Stuttgart
ENEL PRODUZIONE SpA, Area Tecnica Ricera

WP 1: Mechanistic study on material corrosion in an oxy-coal fired flue gas environment:
- Material manufacture
- Long-term hot/cold corrosion tests
- Parametric study on Cl behaviour

WP 2: Deposit and material testing in technical scale test facilities:
- Determination of corrosive species
- FA and deposit
- Condensate
- Gas composition in hot and cold zones
- Material exposures in hot and cold zones

WP 3: Impact of oxy-fuel process on the ash characteristics and its usability:
- Role and impact of fly ash on deposit formation, material corrosion and ESP performance
- Characterization of fly ashes according to utilisation requirements

WP 4: Evaluation and assessment of results - implications for full scale plants

IFKs KSVA (500 kWth)
ENELs Fosper (5 MWth)
Lignite used in test campaigns & Flue gas composition

LaTBK-S and LaTBK-SS lignite were used for material tests:
- Rich in sulfur and alumino-silicatic character.
- Higher volatile content at “waf” basis.
- different ash content

FG composition, combustion chamber:
0,3 MW with approx. 60 % recirculation rate

<table>
<thead>
<tr>
<th>Proximate Analysis</th>
<th>LaTBK</th>
<th>LaTBK-S</th>
<th>LaTBK-S+</th>
</tr>
</thead>
<tbody>
<tr>
<td>H\textsubscript{2}O</td>
<td>% raw</td>
<td>9,8</td>
<td>10,15</td>
</tr>
<tr>
<td>Volatiles</td>
<td>% waf</td>
<td>57,39</td>
<td>56,98</td>
</tr>
<tr>
<td>Ash</td>
<td>% wf</td>
<td>5,57</td>
<td>18,64</td>
</tr>
<tr>
<td>Fixed C</td>
<td>% waf</td>
<td>42,61</td>
<td>43,02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate Analysis</th>
<th>LaTBK</th>
<th>LaTBK-S</th>
<th>LaTBK-S+</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>% waf</td>
<td>66,45</td>
<td>67,99</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>% waf</td>
<td>4,75</td>
<td>5,33</td>
</tr>
<tr>
<td>N</td>
<td>% waf</td>
<td>0,66</td>
<td>0,73</td>
</tr>
<tr>
<td>S</td>
<td>% waf</td>
<td>0,56</td>
<td>2,31</td>
</tr>
<tr>
<td>O</td>
<td>% waf</td>
<td>27,58</td>
<td>23,65</td>
</tr>
<tr>
<td>Cl</td>
<td>% waf</td>
<td>---</td>
<td>< 0,02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Elements</th>
<th>LaTBK</th>
<th>LaTBK-S</th>
<th>LaTBK-S+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>% wf</td>
<td>3,71</td>
<td>5,95</td>
</tr>
<tr>
<td>CaO</td>
<td>% wf</td>
<td>26,6</td>
<td>8,43</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3}</td>
<td>% wf</td>
<td>24,1</td>
<td>8,1</td>
</tr>
<tr>
<td>K\textsubscript{2}O</td>
<td>% wf</td>
<td>0,63</td>
<td>0,98</td>
</tr>
<tr>
<td>MgO</td>
<td>% wf</td>
<td>8,65</td>
<td>2,4</td>
</tr>
<tr>
<td>Na\textsubscript{2}O</td>
<td>% wf</td>
<td>0,13</td>
<td>0,19</td>
</tr>
<tr>
<td>P\textsubscript{2}O\textsubscript{5}</td>
<td>% wf</td>
<td>0,01</td>
<td>0,08</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>% wf</td>
<td>12,5</td>
<td>48,7</td>
</tr>
<tr>
<td>TiO\textsubscript{2}</td>
<td>% wf</td>
<td>0,15</td>
<td>0,44</td>
</tr>
<tr>
<td>SO\textsubscript{3}</td>
<td>% wf</td>
<td>18,3</td>
<td>9,34</td>
</tr>
</tbody>
</table>

Heating Value

<table>
<thead>
<tr>
<th>Heating Value</th>
<th>LaTBK</th>
<th>LaTBK-S</th>
<th>LaTBK-S+</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHV</td>
<td>J/g, raw</td>
<td>22,279</td>
<td>19,424</td>
</tr>
<tr>
<td>LHV</td>
<td>J/g, raw</td>
<td>21,163</td>
<td>18,078</td>
</tr>
</tbody>
</table>

LaTBK-S lignite_ Corrosive species in the FG ducts:
H\textsubscript{2}CO\textsubscript{3} = 60 mg/m\textsubscript{N}3; SO\textsubscript{3} = 100 mg/m\textsubscript{N}3
Test campaign conditions for material tests

Test 1 - Nov 2010:
72h exposure time
one probe 580 C material temperature exposed at 750 C flue gas temperature
one probe 650 C material temperature exposed at 1050 C flue gas temperature
one set of pre-exposed samples were further tested in a lab furnace at their respective material temperature

Test 2 - Nov 2011:
38h exposure at
two probes at 480 C material temperature exposed at 1200 C flue gas
HTC - Probe samples from Test 1

Direct analysis after Test 1 (72h exposure)

- F (310 650 C)
- P (304 650 C)
- C (304 580 C)
- B (T92 580 C)
- G (617 650 C)
- L (310 580 C)
- M (617 580 C)

Analysis after Test 1 (72h) and lab exposure (928h)

- A (T92 580 C)
- D (304 580 C)
- E (310 650 C)
- H (617 650 C)
- K (310 580 C)
- N (617 580 C)
- O (304 650 C)

(T92 - 580 C)

- A
- B

(304 - 580 C)

- C
- D

(310 - 650 C)

- E
- F

(617 - 650 C)

- G
- H

(Alloys - planned temperature)

- K
- L

- M
- N

- O
- P
304 at 580°C and 650°C

Test 1

Sample C (304 A580)

Sample P (304 A650)

Test 1 + Lab

Sample D (304, L580)

Sample O (304, L650)
304 - 580°C (Sample C and D)

Sample C - A580

Sample D - L580
304 - 650°C (Sample P and O)

Sample P - A650

Sample O - L650
• Corrosion as expected more for low alloyed steel T92 and less for high alloyed austenitics
• However it seems that alloy 617 could be susceptible to more attack.
• Steel with higher Cr content for 580C
• Stainless steels form protective oxide layer at 650 which appears to be affected by prolonged exposure
• Stainless steels more effective at 650 than 580