Sulphur retention in CFB oxycombustion burning local Spanish fuel: CIUDEN’s experience

J. Ramosa, Fco. Muñoza, A. Fernándeza, R. Diegoa
R. Kuivalainenb, P. Petrab

aFundación Ciudad de la Energía – CIUDEN, Spain
bFoster Wheeler Energia Oy, Finland
Sulphur retention in CFB oxy-combustion burning local Spanish fuel: CIUDEN’s experience

- Introduction
- Fuels
- Results
 - Overall efficiency: Temperature and Ca/S ratio
 - Once-through sulphur retention/recirculation effect
- Conclusions
Introduction

Since July 2012, several testing campaigns have been carried out:

- Flexi-Burn CFB project (FP7)
- OXYCFB300 Compostilla project (EEPR)
- Macplus project (FP7)
- Internal tests

Fuels tested:

- Anthracite
- Anthracite/pet coke blends
- Anthracite/biomass blends
- Sub-bituminous coal
- Bituminous coal
Fuels analysis:

<table>
<thead>
<tr>
<th>Fuel</th>
<th>% Moisture (a.r.)</th>
<th>% Ash (a.r.)</th>
<th>% Volatiles (d.a.f)</th>
<th>% C (d.a.f)</th>
<th>% H (d.a.f)</th>
<th>% N (d.a.f)</th>
<th>% S (d.a.f)</th>
<th>% O (d.a.f)</th>
<th>HHV J/g (d.a.f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite</td>
<td>4,95</td>
<td>34,14</td>
<td>11,51</td>
<td>88,56</td>
<td>2,96</td>
<td>1,19</td>
<td>1,49</td>
<td>5,80</td>
<td>34,594</td>
</tr>
<tr>
<td>Anthracite/pet-coke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(70/30 % w)</td>
<td>4,50</td>
<td>25,09</td>
<td>10,69</td>
<td>88,29</td>
<td>3,21</td>
<td>1,41</td>
<td>2,97</td>
<td>4,12</td>
<td>35,032</td>
</tr>
<tr>
<td>Anthracite/pet-coke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50/50 % w)</td>
<td>4,49</td>
<td>18,72</td>
<td>10,70</td>
<td>88,07</td>
<td>3,38</td>
<td>1,50</td>
<td>3,84</td>
<td>3,21</td>
<td>35,174</td>
</tr>
<tr>
<td>Anthracite/pet-coke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20/80 % w)</td>
<td>3,70</td>
<td>9,55</td>
<td>10,61</td>
<td>88,19</td>
<td>3,57</td>
<td>1,68</td>
<td>4,97</td>
<td>1,60</td>
<td>35,325</td>
</tr>
<tr>
<td>Sub-bituminous</td>
<td>26,75</td>
<td>3,61</td>
<td>49,62</td>
<td>59,93</td>
<td>5,13</td>
<td>0,87</td>
<td>0,12</td>
<td>33,95</td>
<td>30,225</td>
</tr>
<tr>
<td>Anthracite/biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(80/20 % HV)</td>
<td>4,70</td>
<td>20,70</td>
<td>24,21</td>
<td>80,35</td>
<td>3,59</td>
<td>0,98</td>
<td>1,27</td>
<td>13,81</td>
<td>31,859</td>
</tr>
</tbody>
</table>
Results. Sulphur retention

Anthracite:

Ca/S ratio (mol/mol) vs % Sulphur retention

Temperature (°C) vs % Sulphur retention
Results. Sulphur retention

Anthracite/Pet coke blend (70/30 % w):

Ca/S ratio (mol/mol)

Temperature (°C)
Results. Sulphur retention

Anthracite/ Pet coke blend (50/50 % w):

Ca/S ratio (mol/mol) Temperature (°C)
Results. Sulphur retention

Anthracite/ Pet coke blend (20/80 % w):

Ca/S ratio (mol/mol)

Temperature (°C)
Results. Sulphur retention

Anthracite/ Biomass blend (80/20 % w):

- Ca/S ratio (mol/mol)
- Temperature (°C)
Results. Once-through sulphur retention

Anthracite:

![Graph showing % Per pass Sulphur retention vs Ca/S ratio for Anthracite oxy](image1)

![Graph showing % Sulphur retention vs Ca/S ratio for Anthracite oxy](image2)

Ca/S ratio (mol/mol)
Results. Once-through sulphur retention

Anthracite:

Temperature (°C)

Temperature (°C)
Results. Once-through sulphur retention

Anthracite:

Ca/S ratio (mol/mol) Temperature (°C)
Anthracite/pet coke blend (70/30 % w):

Results. Once-through sulphur retention

Ca/S ratio (mol/mol)

Ca/S ratio (mol/mol)
Results. Once-through sulphur retention

Anthracite/pet coke blend (70/30 % w):

Temperature (°C)
Results. Once-through sulphur retention

Anthracite/pet coke blend (70/30 % w):

Ca/S ratio (mol/mol)

Temperature (°C)
Conclusions

- High sulphur capture efficiency in oxy-combustion mode, even with high sulphur fuels.
- Highly dependent on temperature and Ca/S ratio.
- Taking notice on once-through sulphur retention on the CFB boiler, an opportunity to optimization.
Acknowledgement

- The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP 7/2007-2013) under grant agreement n 239188. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.
THANKS FOR YOUR ATTENTION

For further information:
Francisco Muñoz, francisco.munoz@ciuden.es