Optimization of an oxy-fuel CFB plant with oxygen production by electrolytic membranes

Matteo C. Romano, Fabio Furesi, Davide Tagliapietra, Paolo Chiesa
Dipartimento di Energia, Politecnico di Milano – Italy
Luca Mancuso
Foster Wheeler Italiana S.r.l. – Italy

3rd Oxyfuel Combustion Conference, 9th-13th September 2013, Ponferrada, Spain
Motivation of the study

The use of oxygen membrane (OTM) can reduce the consumption for O_2 production with respect to cryogenic ASU → higher efficiency if properly integrated in power plants (oxyfuel plants and IGCC) and hydrogen plants.

A number of new process variables results from the integration of OTM in oxyfuel steam plants, to be optimized on a techno-economic basis as function of membrane properties and cost.

This work is part of the FP7 Demoys project, aiming at developing OTM with the “Plasma Spraying Thin Films” innovative deposition method.
Simplified power plant

Coal + sorbent
exhaust CO₂ rich flow

Hot gas filter

CFB boiler

Recirculating sweep gas

OTM

Oxygen + sweep gas

Oxygen depleted air

Turbocharger

Inlet air
Oxygen membrane model

- Planar counter- or co-flow membrane
- 1D model solved with a finite difference Matlab code
- Both mass and heat transfer are modelled

- Oxygen separation steps:
 - O_2 diffusion in air channel
 - O_2 diffusion in support
 - O_2 adsorption and dissociation
 - O_2^- diffusion in membrane
 - $\text{O}_2^- + 2e^-$ association and O_2 desorption
 - O_2 diffusion in permeate stream
Membrane model

The three mass transfer steps on the membrane (O\textsubscript{2} adsorption and dissociation, bulk diffusion, O\textsubscript{2} association and desorption) can be modelled considering the limiting step, depending on membrane thickness.

Thin membrane: Kovalevsky equation

\[J_{O2} = \alpha k_r \frac{P_{O2}'^{0.5} - P_{O2}''^{0.5}}{P_{O2}^{0.5} + P_{O2}''^{0.5}} \]

Thick membrane: Wagner equation

\[J_{O2} = \frac{C_w T}{d} e^{-\frac{K_w}{T}} \ln \left(\frac{P_{O2}'}{P_{O2}''} \right) \]
Membrane model output

Main OTM operating variables:

- **O₂ separation ratio** “SR”: % of O₂ in the feed air separated by the membrane (which determines the air flow rate on the feed side for a given flow rate of permeated oxygen)
- Temperature of air feed: “T_{feed-in}”
- Pressure of air feed (i.e. air compressor pressure ratio): “β”
- O₂ concentration at permeate flow outlet (i.e. sweep gas flow rate): “X_{O₂,perm-out}”
- Temperature and pressure of sweep gas at membrane inlet (fixed by CFB in this case)
Membrane model output – effect of SR and $T_{\text{feed-in}}$

curves at constant permeated O_2 flow rate

$\beta = 20$, $x_{O_2, \text{PERM-OUT}} = 40\%$, $T_{\text{SWEEP,IN}} = 950^\circ C$
Membrane model output – Effect of SR and $x_{O_2,\text{perm-out}}$

Curves at constant permeated O_2 flow rate

$\beta = 20$, $T_{\text{FEED,IN}} = 800^\circ\text{C}$, $T_{\text{SWEEP,IN}} = 950^\circ\text{C}$

High sweep/air flow ratio \rightarrow high average membrane temperature
Complete power plant layout

- Infiltration air
- Limestone
- Coal
- Hot gas filtering
- CPU
- Liquid CO₂
- Vent

Matteo Romano
Simulation tools

GS code (www.gecos.polimi.it/software/gs.php):

- Modular structure: very complex schemes can be reproduced by assembling basic modules
- Efficiency of turbomachineries evaluated by built-in correlations accounting for operating conditions and the machine size
- Stage-by-stage calculation of steam and gas turbines
- Calculation of chemical equilibrium based on Gibbs free energy
- Thermodynamic properties of gases → NASA polynomials
- Thermodynamic properties of water/steam → IAPWS-IF97

Aspen Plus:

- CO₂ compression and purification

Matlab:

- Membrane model
- Economic optimization routine
Sensitivity analysis

Example of sensitivity analysis on O_2 separation ratio:

Higher SR \rightarrow lower air compressed for a given O_2 production

\rightarrow Lower heat in the air heat exchanger

\rightarrow Lower heat input in the gas cycle (which has a lower efficiency than the steam cycle)

\rightarrow Higher net plant efficiency
Base case defined on the basis of “reasonable” OTM operating variables:

- O_2 separation ratio $SR = 80\%$
- Temperature of air feed: $T_{\text{feed-in}} = 800\,^\circ C$
- Air compressor pressure ratio: $\beta = 20$
- O_2 concentration at permeate flow outlet: $x_{O_2,\text{perm-out}} = 30\%$
Reference case performance

<table>
<thead>
<tr>
<th></th>
<th>air-CFB</th>
<th>ASU oxy-CFB</th>
<th>OTM oxy-CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power balance, MW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam turbine</td>
<td>814.1</td>
<td>717.4</td>
<td>693.1</td>
</tr>
<tr>
<td>ASU/Turbocharger</td>
<td>-</td>
<td>-85.61</td>
<td>37.03</td>
</tr>
<tr>
<td>CO₂ compression</td>
<td>-</td>
<td>-55.07</td>
<td>-60.18</td>
</tr>
<tr>
<td>Fans</td>
<td>-17.79</td>
<td>-11.94</td>
<td>-22.90</td>
</tr>
<tr>
<td>Other auxiliaries</td>
<td>-36.68</td>
<td>-33.18</td>
<td>-31.20</td>
</tr>
<tr>
<td>Net electric plant output, MW</td>
<td>759.64</td>
<td>531.62</td>
<td>615.88</td>
</tr>
<tr>
<td>Coal thermal input, MWe</td>
<td>1707.8</td>
<td>1436.3</td>
<td>1574.5</td>
</tr>
<tr>
<td>Net electric efficiency, %LHV</td>
<td>44.48</td>
<td>37.01</td>
<td>39.12</td>
</tr>
<tr>
<td>Carbon capture ratio, %</td>
<td>-</td>
<td>91.60</td>
<td>96.21</td>
</tr>
<tr>
<td>CO₂ specific emission, g/kWh</td>
<td>788.88</td>
<td>79.36</td>
<td>33.89</td>
</tr>
<tr>
<td>CO₂ avoided, %</td>
<td>-</td>
<td>89.94</td>
<td>95.70</td>
</tr>
<tr>
<td>SPECCA, MJₗHV/kgCO₂</td>
<td>-</td>
<td>2.30</td>
<td>1.47</td>
</tr>
</tbody>
</table>

SPECCA index: specific primary energy consumption for CO₂ avoided

\[
SPECCA \text{ [MJ}_\text{LHV}/\text{kgCO₂}] = \frac{3600 \cdot ((1/\eta) - (1/\eta_{\text{ref}}))}{E_{CO₂,\text{ref}} - E_{CO₂}}
\]
Cost analysis of reference cases

- A comprehensive economic model has been implemented.
- The economic model includes equipment cost estimation for non-conventional components (i.e., the membrane modules, high-temperature heat exchanger, ceramic filters, and turbocharger).
- Cost of membrane module assumed at 1000 €/m².

<table>
<thead>
<tr>
<th></th>
<th>air-CFB</th>
<th>ASU oxy-CFB</th>
<th>OTM oxy-CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net electric plant output, MW</td>
<td>760</td>
<td>532</td>
<td>616</td>
</tr>
<tr>
<td>Net electric efficiency (LHV), %</td>
<td>44.5</td>
<td>37.0</td>
<td>39.1</td>
</tr>
<tr>
<td>Carbon capture ratio, %</td>
<td>----</td>
<td>91.6</td>
<td>96.2</td>
</tr>
<tr>
<td>CO₂ specific emission, g/kWh</td>
<td>788.9</td>
<td>79.6</td>
<td>34.0</td>
</tr>
<tr>
<td>CO₂ avoided, %</td>
<td>----</td>
<td>89.9</td>
<td>95.7</td>
</tr>
<tr>
<td>Total plant cost, M€</td>
<td>1142</td>
<td>1323</td>
<td>1681</td>
</tr>
<tr>
<td>Plant specific cost, €/kW</td>
<td>1503</td>
<td>2489</td>
<td>2730</td>
</tr>
<tr>
<td>Level. cost of electricity, €/MWh</td>
<td>46.4</td>
<td>76.8</td>
<td>84.3</td>
</tr>
<tr>
<td>Investment</td>
<td>22.7</td>
<td>27.3</td>
<td>25.9</td>
</tr>
<tr>
<td>Fuel</td>
<td>10.6</td>
<td>20.9</td>
<td>36.5</td>
</tr>
<tr>
<td>O&M</td>
<td>79.8</td>
<td>125.0</td>
<td>146.6</td>
</tr>
<tr>
<td>Cost of avoided CO₂, €/tonn</td>
<td>----</td>
<td>63.7</td>
<td>88.5</td>
</tr>
</tbody>
</table>
Economic model

Need of a comprehensive optimization procedure: operating variables have various effects and influence one each other. For example:

- If OTM feed air temperature \uparrow:
 - \rightarrow cost of high temperature heat exchanger \uparrow (-)
 - \rightarrow cost of OTM \downarrow (+)

- If O_2 separation ratio \uparrow \rightarrow air flow rate \downarrow:
 - \rightarrow plant efficiency \uparrow (less heat to the gas cycle) (+)
 - \rightarrow size and cost of turbomachines and high T heat exchanger \uparrow (-)
 - \rightarrow OTM area $\uparrow\downarrow$ (depends on $x_{O2,perm-out}$) (+/-)

- If $x_{O2,perm-out} \uparrow$ \rightarrow sweep gas flow \uparrow \rightarrow CO$_2$ recycle flow \uparrow
 - \rightarrow OTM area \downarrow (+)
 - \rightarrow High temperature filtering surface \uparrow (-)
 - \rightarrow CFB boiler cross section \uparrow (-)
 - \rightarrow recycle fan power \uparrow (-)
Economic model

Economic optimization procedure:

- Relatively simple functions (polynomials, exponentials, etc…) have been defined to have a fast calculation of the performance of the plant and of the main values for costing as function of the optimizing variables
 - Lose of accuracy
 - Gain in computational time (no iterations)

- Use of a Matlab optimization routine to minimize the cost of electricity.
Result of optimization

<table>
<thead>
<tr>
<th>Optimization variables</th>
<th>“Tentative” base case</th>
<th>Optimized case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen separation ratio (SR), %</td>
<td>80</td>
<td>88.6</td>
</tr>
<tr>
<td>Temperature $T_{FEED,IN}$, °C</td>
<td>800</td>
<td>870</td>
</tr>
<tr>
<td>Compressor pressure ratio β</td>
<td>20</td>
<td>17.9</td>
</tr>
<tr>
<td>O_2 concentration $x_{O_2,PERM-OUT}$, %</td>
<td>30</td>
<td>21</td>
</tr>
</tbody>
</table>

Achieved performance

<table>
<thead>
<tr>
<th>Achieved performance</th>
<th>“Tentative” base case</th>
<th>Optimized case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average oxygen flux, Nml/cm2-min</td>
<td>1.65</td>
<td>4.01</td>
</tr>
<tr>
<td>Net electric plant output, MW</td>
<td>616</td>
<td>639</td>
</tr>
<tr>
<td>Net electric efficiency (LHV), %</td>
<td>39.1</td>
<td>39.1</td>
</tr>
<tr>
<td>Carbon capture ratio, %</td>
<td>96.2</td>
<td>95.3</td>
</tr>
<tr>
<td>CO_2 specific emission, g/kWh</td>
<td>34.0</td>
<td>42.3</td>
</tr>
<tr>
<td>CO_2 avoided, %</td>
<td>96.2</td>
<td>94.6</td>
</tr>
</tbody>
</table>
Economic improvement

<table>
<thead>
<tr>
<th></th>
<th>“Tentative” base case</th>
<th>Optimized case</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total plant direct cost, M€</td>
<td>1681</td>
<td>1374</td>
<td>-21%</td>
</tr>
<tr>
<td>Plant specific cost, €/kW</td>
<td>2730</td>
<td>2149</td>
<td>-21%</td>
</tr>
<tr>
<td>Level. cost of electricity, €/MWh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment</td>
<td>84.3</td>
<td>66.3</td>
<td>-21%</td>
</tr>
<tr>
<td>Fuel</td>
<td>25.9</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>O&M</td>
<td>36.5</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td>Total cost of electricity</td>
<td>146.6</td>
<td>122.4</td>
<td>-17%</td>
</tr>
<tr>
<td>Cost of avoided CO$_2$, €/tonn</td>
<td>83.0</td>
<td>57.0</td>
<td>-36%</td>
</tr>
</tbody>
</table>
Conclusions

- Membrane module represents a significant fraction (15-30%) of the total plant cost and of the O&M cost.
- Specification of membrane design parameters and operating conditions involves economic optimization of the whole plant.
- A change in the membrane characteristics eventually moves the optimal conditions and requires different design specs of the membrane module.
- The number of parameters to be considered makes a “tentative” selection of the membrane module design specs hard.
- In the specific case considered, multi-variable economic optimization led to plant configuration featuring:
 - Air stream temperature at the feed side inlet $T_{\text{feed-in}} = 860-880°C$
 - Membrane separation ratio $\text{SR} = 80-90%$
 - High sweep gas flow rate (i.e. low O_2 concentration)
- The optimized OTM case shows a cost of avoided CO_2 of 57 €/tonn. It is about 10% less than the cost of the corresponding plant based on cryogenic air separation unit.
Thank you

Acknowledgements:
The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 241309 (Project acronym: DEMOYS)