Understanding the boiler operation under oxyfuel combustion conditions – Impact to Material Selection

B. Bordenet, F. Kluger, P. Mönckert, J. Marion, A. Levasseur

4th Meeting of the oxy-corrosion working group
London, June 18th, 2014
Why oxy-combustion:

Robust:
- ✔ developed from existing components

Flexible:
- ✔ All types boilers, firing systems, fuels
- ✔ Options for operational flexibility
- ✔ Retrofit and “Oxy-Ready” can be addressed

Scale-up:
- ✔ No constraints anticipated for large commercial units up to 1000 MWe, high efficiency with ultra-supercritical steam cycles

Cost competitive:
- ✔ With other CCS & other low carbon generation

Environmentally-friendly:
- ✔ Near Zero Emissions
- ✔ No new chemicals introduced to plant
- ✔ High CO₂ capture rates (>90%)
Oxy-Combustion Plant - Areas of Focus

Air Separation Options
- Cryogenic
- Membranes
- Oxide Carrier Materials

Components
- Scaling
- Integration
- Optimisation

Steam Generator
- Oxyfuel PF Firing
- Oxy CFB
- Chemical Looping

Flue Gas Cleaning
- Particle Removal
- NOx-Removal
- Desulphurisation
- Mercury Removal
- Flue Gas Drying
- Separation of N₂, O₂, ...

Vent Gases
Quality & Efficiency of CO₂ Separation

Materials

Dynamic Behaviour

Air Inleakage

Flue Gas Recirculation

Control & Safety Concepts

Transport & Sequestration

Capture

Oxy-fired Boiler – Impact on material selection- B. Bordenet et al. 17/06/2014– P 3
Alstom oxy-combustion technology
Development steps

Reference Design Studies

Scale-Up

2013

2019

Lab Scale
<3 MWth

Large Pilot Plants
15-30 MWth

Demonstration
150-400 MWe

Full-Scale
600-1100 MWe

Modeling & Tool Dev.

1990s

2008
30MWth Oxy-combustion pilot plant at Vattenfall’s Schwarze Pumpe, Germany

First oxy pilot plant with complete train for CO₂ separation and capture

- Alstom supplied the Boiler, ESP and other components of the flue gas path
- Single Burner down-fired furnace
- Technology partnership with Vattenfall to advance oxyfuel technology

Operation started September 2008

- More than 11,700 operation hours and >10,600 tons of CO₂
- Tests with two lignites (low/high sulfur)
- Test phases with Alstom Burners (Design A+B) finished
- Data on combustion and boiler performance, and component interactions
15MW_{th} Oxyfuel pilot plant (BSF)
Alstom Boiler Laboratories, Windsor, CT

Multi-burner, Tangential Fired facility to develop oxy boiler system and generate detailed design and performance data.

Comprehensive Test Program with US DOE ($21.5M USD)

- Testing started Sept. 2009 until 2014
- Evaluate the impacts of different oxy process options and boiler design parameters
- Evaluate the performance of different 8 coals: Subbituminous, Low S bituminous, High S Illinois bituminous coal, North Dakota Lignite & Lausatian Lignite
 - combustion, heat transfer, pollutant emissions, deposition, corrosion …
- Evaluate, improve, and validate engineering and computational tools
- Development of design guidelines
- Commercial Reference Designs
- Demonstration Design
Oxyfuel Prozess - Air vs. Oxy Combustion
Differences of Flue Gas Qualities

Air combustion:

- Air: 21 Vol.-% O₂
 - 79 Vol.-% N₂

Oxyfuel combustion:

- Oxidant: > 21 Vol.-% O₂ < 79 Vol.-% FG

Flue gas compositions:

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>21 Vol.-% O₂ 79 Vol.-% N₂</td>
</tr>
<tr>
<td>ASU</td>
<td>N₂</td>
</tr>
<tr>
<td>Oxidant</td>
<td>O₂</td>
</tr>
<tr>
<td>SOFO</td>
<td>CO₂</td>
</tr>
<tr>
<td>SOFO</td>
<td>Ar+Inerts</td>
</tr>
<tr>
<td>SOFO</td>
<td>H₂O</td>
</tr>
<tr>
<td>SOFO</td>
<td>SO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxyfuel</td>
<td>N₂</td>
</tr>
<tr>
<td>O₂</td>
<td>27.7</td>
</tr>
<tr>
<td>CO₂</td>
<td>58.3</td>
</tr>
<tr>
<td>Ar+Inerts</td>
<td>2.3</td>
</tr>
<tr>
<td>H₂O</td>
<td>27.7</td>
</tr>
<tr>
<td>SO₂</td>
<td>0.3</td>
</tr>
</tbody>
</table>
30MWth Oxy-combustion pilot plant (Schwarze Pumpe)

SO₂-concentration Air vs. Oxy

- SO₂ concentration in the flue gas is depending on the availability of sulphur sink in the secondary recycle

- Secondary recycle location in the pilot plant is downstream of ESP, also w/o a sulphur sink

- SO₂ concentration in oxy-combustion is approx. 4 times the value in air combustion

- SO₂ loading [mg/MWh] in oxy-combustion is the same as for air-combustion

Specific SO₂-loading is the same for air and oxy
SO\textsubscript{X} in the flue gas – impact of oxy-firing

- Absolute SO\textsubscript{X}-concentration depends on recycling scheme

- Air-firing: reference

- Oxy w/o sulfur capture: increase of factor 3-4 due to flue gas recirculation

- Oxy w/ sulfur capture: small increase as massflow is smaller (= less dilution) in oxy to keep heat input constant

Illinois high sulfur coal @ 15MWth Oxy pilot

Increase in SO\textsubscript{2} even with sulfur capture from recycle
Similar SO_3 Conversion Rate As Air Firing - Economizer Outlet Measurements in 15MWth oxyfuel pilot plant (BSF)

North Dakota Economizer Outlet SO_3 results

Illinois Bituminous Economizer Outlet SO_3 results

Similar SO_2 to SO_3 conversion rates
Similar ash composition

- Ash measurement from 15MWth oxy-pilot (BSF) with North Dakota lignite: no S capture in recirculation loop

- Ash samples from 30MWth Schwarze Pumpe with German (Lausatian) lignite from air- and oxy-firing: show comparable X-ray diffraction spectrum (= mineral composition)

Ash composition similar with higher SO$_3$-content when no S is captured in recirculation loop
Impact on boiler operation

• Heat transfer
 – Comparable to heat transfer experienced in air-combustion
 – Heat transfer profile in the pilot can be adjusted by firing system parameters (e.g. flue gas recycle)

• Burnout
 – Comparable to burnout experienced in air combustion

• Fouling & Slagging:
 – Similar behaviour in air- and oxy-combustion
 – Fly ash and bottom ash do have similar composition in air-and oxy-combustion
Impact on Furnace corrosion

• Waterwall & Fireside corrosion:
 – Similar ash composition:
 ⇒ Similar corrosion mechanisms expected
 – Absolute SO$_X$-content in flue gas and ash is dependent on recycling scheme:
 • w/ sulfur capture in recirculation loop: SOX-content in flue gas only slightly higher than in air
 – Corrosion experience from air-fired could be transferred to oxy-fuel, if SO$_X$-content is maintained within experience range
 – More details in presentation ‘Fireside corrosion under oxyfuel combustion conditions ‘ on June 19th

⇒ oxy-fuel plant can be equipped with standard materials, with monitoring of metal wastage to confirm statements by long-term experience
Impact on ESP / Flue gas recirculation

Prevention of cold end corrosion

- Acid dew point vs. cold end of Regenerative-Gas-Heater:
 - Sulfuric acid formation: SO_2 to SO_3 conversion influenced by reactive surfaces (ash compounds, membrane wall, ...)
 - High moisture and high SO_2 concentrations impact level of acid dew point temperature

Mitigations:
- Proper selection of location for flue gas recycle:
 - Secondary recycle downstream FGD (reduced SO_2 content),
 - Primary recycle downstream FGC (reduced moisture)
- Adjusting temperature according SO_X-level to be above acid dew point by appropriate insulation
Concluding remarks

• Material experience from air-firing can be transferred to oxy-firing, when SO$_x$-content is within experience regime or S capture is installed in the recirculation loop
 – Long term operation and evaluation of material performance in large-scale will be collected to confirm lab / pilot plant results

• Oxy-combustion has successfully achieved development steps over the past ten years.

• Alstom and other oxy pilots across the world provided design data and confirmed robustness of the process.

• We are prepared to demonstrate oxy-combustion at large-scale under real commercial conditions.

• The White Rose project in UK is a promising opportunity and providing a key step for commercialization.
Outlook: White Rose Large Scale oxy-demo project, UK

Location: Drax Power Station, North Yorkshire, UK

- Largest Oxy-Combustion CCS project worldwide: 450MW_e (gross)
- New ultra-supercritical coal-fired power plant with full stream treatment
- Biomass co-firing: zero- or negative - CO_2 emissions
- CO_2 Transport and offshore Storage network by National Grid Carbon Limited
- 90% CO_2 capture-rate
- A Front End Engineering and Design (FEED) Contract has been awarded for the White Rose CCS project, signed by the UK Government on 20th December 2013
Disclaimer

Parts of this presentation were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Information disclosed herein is furnished to the recipient solely for the use thereof as has been agreed upon with ALSTOM and all rights to such information are reserved by ALSTOM. The recipient of the information disclosed herein agrees, as a condition of its receipt of such information, that ALSTOM shall have no liability for any direct or indirect damages including special, punitive, incidental, or consequential damages caused by, or arising from, the recipient’s use or non-use of the information.