Fireside corrosion under oxyfuel combustion conditions

B. Bordenet, R. Ganta, J. Pschirer, A. Levasseur, P. Moenckert, F. Kluger, J. Marion

4th Meeting of the oxy-corrosion working group

London, June 19th, 2014
• Background

• Experience from pilot plants

• Fireside corrosion lab testing

• Conclusions
Problem statement

• Fireside corrosion risk evaluation when introducing oxy-fuel firing in comparison to air-firing
 – Three scenarios to compare as gas composition is changing for different recycling schemes:
 • Air: Baseline
 • Oxy with recirculation w/o cleaning: SO_X & Cl-contents increase by a factor of 3-4
 • Oxy with recirculation w/ cleaning (FGD): SO_X & Cl-contents are slightly higher level to air-firing

• Fireside corrosion risk evaluation for hottest sections
 – In Ultra Supercritical (USC) boilers for retrofit applications for standard materials: martensitic steels, austenitic steels
 – in Advanced Ultra Supercritical (A-USC) for new plants: use of Ni-base alloys with or without coatings at hottest location
Approach: Corrosion risk evaluation

- Understanding of gas and coal ash compositions in the different operation schemes from pilot plants
- Thermodynamic modelling of gas and ash to determine lab testing conditions
- Lab testing to gain understanding of fireside corrosion mechanisms

⇒ Detailed corrosion risk evaluation for A-USC and USC boilers
Basis for evaluation: facilities

- Measurement of flue gas and ash composition has been made on mainly two pilot plants in air and oxy-mode:
 - Boiler Simulation Facility (BSF), Windsor, CT, 15MW$_{th}$:
 - Subbituminous coal (PRB), Low S Bituminous coal, High S Illinois Bituminous coal, North Dakota Lignite, Schwarze Pumpe Lignite
 - With and without cleaning in flue gas recirculation loop
 - ‘Schwarze Pumpe’, Germany, 30MW$_{th}$:
 - German Lignite:
 - No cleaning in recirculation loop
Gas compositions

- Detailed measurement of gas compositions at BSF for different conditions, air vs. oxy for different coal:
 - SO_2 to SO_3 conversion rate is comparable for air and oxy-firing [1, 2]
 - Absolute SO_X-content in flue gas was higher in oxy-fuel firing as the flue gas recirculation stream is not cleaned [1, 2]
 - SO_2 to SO_3 conversion rate seems to be influenced mainly by residence time and not by the absolute SO_X-level in the flue gas
- CO levels:
 - Increased for sub-bituminous coal & Lignite in oxy-mode
 - Comparable between air- & oxy-firing for bituminous coal
 - NO_X (lb/ Mbtu or kg/ MWh) is lower in oxy-firing than air [1]

Thermodynamic modeling of the gas composition

SO₂ / SO₃-content for North Dakota Lignite

- Modelled gas composition matches well the values from BSF in oxy and air-firing

<table>
<thead>
<tr>
<th>Gas composition at 1000°C</th>
<th>#83A Air-firing</th>
<th>#98A Oxy-firing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BSF</td>
<td>Model</td>
</tr>
<tr>
<td>O₂</td>
<td>2.74</td>
<td>2.77</td>
</tr>
<tr>
<td>CO₂</td>
<td>14.86</td>
<td>14.78</td>
</tr>
<tr>
<td>H₂O</td>
<td>10.34</td>
<td>11.85</td>
</tr>
<tr>
<td>N₂</td>
<td>71.97</td>
<td>70.05</td>
</tr>
<tr>
<td>SOₓ (Total)</td>
<td>0.087</td>
<td>0.084</td>
</tr>
</tbody>
</table>

- Modelled SO₂ / SO₃-conversion predicts to high SO₃-contents
 - Measured SO₃-content in all tests was below 3% of total SOₓ
 - SO₂→SO₃ conversion is kinetically hindered
 - Measured SO₃-content corresponds to the equilibrium content in the temperature range 950-1050°C
Ash composition in pilot plants

- Ash measurement from 15MWth oxy-pilot (BSF) with North Dakota lignite: no S capture in recirculation loop

- Ash samples from 30MWth Schwarze Pumpe with German (Lausatian) lignite from air- and oxy-firing: show comparable X-ray diffraction spectrum (= mineral composition)

Ash composition similar with higher \(\text{SO}_3 \)-content when no S is captured in recirculation loop
Basis for evaluation: Ash composition (Air vs. Oxy)

- General conclusions on ash composition in pilot plants (BSF & Schwarze Pumpe):
 - Ash in general similar between oxy & air
 - SO$_3$-content in ash is higher in oxy due to higher SO$_X$-content in flue gas of a factor ~3
 - No increased C-content in ash in oxy-mode
 - No detection of carbonates in ash

- Measurements from BSF on North Dakota Lignite were used to validate thermodynamic model of ash composition
Ash composition: Air vs. Oxy-firing

Thermodynamic model of ash composition

• Thermodynamic modelling for ash composition done for North Dakota Lignite
 – Model of ash composition is possible
 – Ash model confirmed by pilot plant operation:
 • Ash in general similar between oxy & air
 • SO_3-content in ash depending on SO_x-content in gas, hence recirculation scheme
 – Ash model will be extended to other ashes
Fireside corrosion testing at Alstom

• Samples:
 – Cut tube sections
 – Surface finish as received
 – Lower 2/3 of sample coated with ash

• Ash applied as slurry (addition of Methyl Cellulose) with a brush
 – Synthetic ashes:
 • Mixed in lab
 • 2.5wt% C as Charcoal was added to the ash
 • Ashes from pilots

• Gases:
 – No catalyst used for $\text{SO}_2 / \text{SO}_3$-equilibrium
 – SO_x introduced as SO_2 in gas mixture

Total Metal Loss
= Metal recession + internal attack
Testing for German Lignite (I)

Alstom testing series w/ fly ash (2008-2010) [3, 4]

- 3 ashes from 0.5MW_th (IFK Stuttgart, low S & high S Lignite) & 3MW_th (Enel, Hard coal) pilots
- Effect of ash composition is small for 9% Cr steels
- Only slight difference between high S and low S at 580 C
- Small tendency for lower attack after 1000h for low S (0.08%) vs. high S (0.21%)
- High Cr Austenitics show low metal wastages at 580 C & 650 C

[4] work was performed in the frame of the OxyCorr Project, partly funded by the RFCS Research Program of the European Commission (RFCR-CT-2009-00005)
Testing for German Lignite (II)

Alstom internal testing series w/ synthetic ash (2008-10)

- 600 C & 700 C up to 4 month of testing w/ high SO\(_3\)-content in ash
- Only high Cr (21-25%) austenitic steels exhibit good corrosion resistance
- Ni-base alloys show high corrosion attack for high S-conditions (localised and / or along grain boundaries) [5, 6]

- Same tendency at 700 C

Gas: 32% H\(_2\)O, 1.9% O\(_2\) 0.45%SO\(_2\), CO\(_2\) Bal.

CCA617, 700°C, 3066h
Alloy 740, 700 C, 3066h

Sulphides
Oxides
Alstom testing series w/ synthetic ash (2010-13) partially funded by DOE

- Goal: Separation of parameters: oxy vs. air, S-level, HCl-level, ash composition
 - At 650 °C: slightly higher attack in oxy-firing than air-firing for same S- and Cl-content
 - Higher alloyed materials (austenitic steels & Ni-base) showed only small corrosion attack, hence no discrimination possible after 3000h
- Low SO₃-content in ash & Low SO₂-content in gas

Air: 10% H₂O, 3.0% O₂ 0.2%SO₂, 0.02 Cl, CO₂ 15%, N₂ 71.3%
Oxy: 25% H₂O, 3.6% O₂ 0.2%SO₂, 0.02 Cl, CO₂ 64%, N₂ 7.6%

Ferritic steels: slightly higher attack for oxy- than air-firing
Testing for US Eastern Coal (I)

Alstom testing series w/ synthetic ash (2010-13) partially funded by DOE

- Testing done for US eastern coal: to separate parameters, e.g. oxy vs. air, S-level, HCl-level, ash composition
 - 600 °C: significant less corrosion attack than at 650 °C
 - Effect of temperature seems to be have a stronger effect than differences in CO₂, H₂O- levels (oxy vs. air)

Medium S, low Cl:
- 10% H₂O, 3.0% O₂, 0.2%SO₂, 0.01 Cl, 15% CO₂, 71.3% N₂

Low S, high Cl:
- 10% H₂O, 3.6% O₂, 0.08%SO₂, 0.03 Cl, 15% CO₂, 71.3%, N₂

Level of corrosive elements flue gas (S, Cl) seems to be crucial
Corrosion probes from ‘Schwarze Pumpe’

- Corrosion probes from air & oxy-firing of German Lignite
- Localised corrosion on high-alloyed steel & Ni-base (650 C, Oxyfuel):
 - Non-uniform attack
 - Some pits close to ash deposits
 - S- Phases in the corrosion pit close to metal interface
- T92 showed more uniform corrosion at 580 & 650 C
Conclusions: Air vs. oxy

• Good understanding of ash & gas composition in air- and oxy-fuel firing
 - SO$_2$/SO$_3$-conversion rate is comparable for both conditions
 - Ash composition similar: can have an increased SO$_3$-content, if flue gas recirculation is without cleaning in oxy-mode

• S- and Cl-content as well as the Alkali-content is crucial for corrosion rate

• Only a few experiments are available to compare air vs. oxy (w/ cleaning) vs. oxy (w/o cleaning) for the same coal

• Oxy w/o cleaning: severe increased metal wastage expected

• Oxy w/ cleaning: slightly higher attack than for air-firing expected

Oxy w/ cleaning in recirculation loop is preferred scheme to stay within experience range
Conclusions (USC vs. A-USC)

- Ni-base alloys show a tendency for localised corrosion and attack along grain boundaries
 - Effect enhanced for high S-conditions: sulfidation along grain boundaries (617) & in the grains (740)
 - Alloy 740 exhibits grain boundary attack also by oxidation
- Detailed oxidation model might be required (steam-side) for estimation of metal wastage
- Fireside corrosion database (lab & steam loop) is small for higher temperatures (T>650°C) and longer times (>3'000h) for both, air- and oxy-firing
Next steps

• Detailed investigation of Barry steam loop starting Autumn 2014 for high-alloyed materials at higher temperatures (T= 1200-1500 F / 650-815 C, Steam) expected to reach >15’000h
 – Investigation of corrosion morphology and products
 – Better understanding of mechanism over temperature (bell-shaped curve, temperature with maximum corrosion attack)
 – Comparison to lab-generated testing results with respect to
 • Materials ranking of corrosion resistance
 • Corrosion morphology / products

• Long term operation and evaluation of material performance in large-scale plant (e.g. USC-boiler in White Rose 426MWₑ) will be collected to confirm lab / pilot plant results
Disclaimer

Parts of this presentation were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Information disclosed herein is furnished to the recipient solely for the use thereof as has been agreed upon with ALSTOM and all rights to such information are reserved by ALSTOM. The recipient of the information disclosed herein agrees, as a condition of its receipt of such information, that ALSTOM shall have no liability for any direct or indirect damages including special, punitive, incidental, or consequential damages caused by, or arising from, the recipient’s use or non-use of the information.