PILOT PLANT RESULTS FOR 5 M PIPERAZINE WITH THE ADVANCED FLASH STRIPPER

Eric Chen
University of Texas at Austin
Department of Chemical Engineering
September 9, 2015
eric.chen@austin.utexas.edu
UT PZ Pilot Plant Testing

2008
- 8 m PZ Absorber Mellapak 2X Simple Stripper

2010
- 8 m PZ AbsIntercooling RSP 250-hybrid Simple Stripper 120 °C

2010/2011
- 8 m PZ AbsIntercooling RSP 250-hybrid 2-Stage Flash 150 °C, 12 bar

2011
- 8 m PZ AbsIntercooling GTC-350Z, 70° 2-Stage Flash w/ Warm Rich Bypass 150 °C, 14 bar

2013
- 4 m PZ AbsIntercooling RSP-250 1-Stage Flash w/ Cold Rich Bypass 140 °C, 4.4 bar Aerosols, G2 PDI

2015
- 5 & 8 m PZ AbsIntercooling RSP-250 Adv Flash Stripper Cold/Warm Rich Bypass, 150 °C, 8 bar Aerosols, G3 PDI
Current Pilot Facilities & Equipment

- SRP - 0.1 MW, 16.8-inch ID
- 200-450 lb CO₂/hr removal
- Synthetic Flue Gas: Air/CO₂
 - Enthalpy, 1-2 % H₂O, 30-40 °C
 - 3-20% inlet CO₂
 - Air max. oxidative degradation
- 20 feet (6.1 m) absorber packing
- Absorber intercooling
- 0.1-0.2 MW AFS skid w/cold and warm rich bypass
Concentrated PZ Benefits

8 m PZ → 5 m PZ

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Rate<sup>1</sup></th>
<th>CO<sub>2</sub> Capacity<sup>2</sup></th>
<th>Viscosity<sup>3</sup> (cP)</th>
<th>T<sub>max</sub> (°C)</th>
<th>P<sub>max</sub> (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m PZ</td>
<td>11.3</td>
<td>0.63</td>
<td>3</td>
<td>163</td>
<td>14.3</td>
</tr>
<tr>
<td>8 m PZ</td>
<td>8.5</td>
<td>0.79</td>
<td>10.8</td>
<td>163</td>
<td>14.3</td>
</tr>
<tr>
<td>7 m MEA</td>
<td>4.3</td>
<td>0.5</td>
<td>2.5</td>
<td>120</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Notes:

1. k'_g average @ 40 °C – (mol/Pa-s-m²)
2. mol CO₂/mol alkalinity
3. @ 40 °C
Solubility of 5 m PZ and 8 m PZ

Transition Temperature (°C)

CO₂ loading (mol CO₂/mol alkalinity)

5 m PZ

8 m PZ

Solution

PZ·6H₂O
(solid)
Advanced Flash Stripper Configuration

Trim condenser
- CO₂
- H₂O

Cold rich X
- Cold Rich BPS 5-10%

Warm Rich BPS 20-40%

Vented gas
- Trim condenser
- Absorber

Absorber
- Flue gas 12% CO₂
- Lean solvent

Cross exchanger
- CRB:
 - Recover heat gas
 - Indirect contact
- WRB:
 - Non flashing feed
 - Optimal L/G
Adv. Flash Stripper Energy Performance

Heat duty (GJ/tonne CO₂)

Lean loading (mol CO₂/mol alkalinity)

Simple Stripper

Advanced flash stripper

-18%

5 m PZ
5 K CrossX LMTD
150 °C T_{Flash Tank}
0.40 rich loading
2015 AFS Campaign Configuration

- Flue gas 12% CO₂
- Rich pump
- Intercooler
- Absorber
- Condenser
- Cold rich bypass
- Cold rich exchanger
- Warm rich bypass
- Warm cross exchanger
- Hot cross exchanger
- Steam heater
- Stripper
- Flash
- Vented gas
- 5 and 8 m Piperazine
Absorber Conditions

- Flue gas: 12% CO₂
- Vented gas: 0.18-0.27 mol CO₂/mol alk
- Spray: 40°C
- Intercooler: RSP-250, 6.1 m
- ID = 0.43 m
- L/G: 3-5 kg/kg
- Rich pump: 9.9, 14.2 m³/min
- Absorber
- Condenser
- Cold rich exchanger
- Cold rich bypass
- Warm rich bypass
- Trim cooler
- Warm cross exchanger
- Hot cross exchanger
- Stripper
- Steam heater
- Flash
Stripper Conditions

- **Flue gas 12% CO₂**
- **Absorber**
- **Trim cooler**
- **Intercooler**
- **Rich pump**
- **Condenser** 50-70 °C
- **Cold rich exchanger**
- **Warm rich bypass 17 – 41%**
- **Delta T = 7°C**
- **Warm rich bypass 5 – 12%**
- **Hot cross exchanger**
- **Steam heater**
- **Flash** 145 – 150 °C

Stripper
- **RSR# 0.3**
- **ID = 0.16 m**
- **2 m**

Vented gas
AFS Energy Performance

$Q_{\text{stim}} - Q_{\text{loss}}$ (GJ/tonne CO$_2$)

Run

- **2011 Jan.**
 - Two-stage flash
 - (8 m PZ)

- **2011 Oct.**
 - Two-stage flash
 - w/ cold rich BPS
 - (8 m PZ)

- **2015**
 - AFS
 - (5 m and 8 m PZ)
5 m vs 8 m PZ - AFS Performance

14 gpm, 145 °C, 0.24 loading

<table>
<thead>
<tr>
<th></th>
<th>Comparison 1</th>
<th>Comparison 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>5 m PZ concentration (m)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8 m PZ concentration (m)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Solvent Capacity (lb CO₂/lb solution)</td>
<td>0.036</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>0.041</td>
<td>0.042</td>
</tr>
<tr>
<td>Total BPS ratio</td>
<td>25%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>26%</td>
<td>24%</td>
</tr>
<tr>
<td>Heat Duty (GJ/tonne CO₂)</td>
<td>2.36</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>2.21</td>
<td>2.41</td>
</tr>
<tr>
<td>Cross X cold side DT (°F)</td>
<td>11.7</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>15.7</td>
</tr>
</tbody>
</table>
Effect of Lean Loading – 5 m PZ

Lean loading (mol CO\textsubscript{2}/mol alkalinity)

Process heat duty (GJ/tonne CO\textsubscript{2})

Δ Ldg (mol CO\textsubscript{2}/mol alkalinity)

Aspen AFS heat duty

Pilot heat duty

Δ Loading
5 m PZ vs. 8 m PZ - Absorber Performance

12% Inlet CO₂, Full Spray Intercooling

<table>
<thead>
<tr>
<th>Solvent Rate</th>
<th>Gas Rate</th>
<th>Titration LLDG</th>
<th>Measured Removal</th>
<th>Heat Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>ACFM</td>
<td>mol CO₂/mol alk</td>
<td></td>
<td>GJ/tonne CO₂</td>
</tr>
<tr>
<td>5 m</td>
<td>14</td>
<td>350</td>
<td>0.24</td>
<td>96%</td>
</tr>
<tr>
<td>8 m</td>
<td>14</td>
<td>500</td>
<td>0.24</td>
<td>80%</td>
</tr>
</tbody>
</table>

- 5 m PZ higher absorption rates due to viscosity reduction
- Better energy performance
PZ Absorber with Intercooling

12% Inlet CO₂, Lean Solvent Rate 14 GPM

<table>
<thead>
<tr>
<th>Solvent Gas Rate</th>
<th>Titration LLDG</th>
<th>Intercooler Spray Nozzle</th>
<th>Measured Removal</th>
<th>Heat Duty GJ/tonne CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFM</td>
<td>mol CO₂ /mol alk</td>
<td>N</td>
<td>N</td>
<td>80%</td>
</tr>
<tr>
<td>5 m 350</td>
<td>0.25</td>
<td>Y</td>
<td>Y</td>
<td>96%</td>
</tr>
<tr>
<td>8 m 500</td>
<td>0.24</td>
<td>Y</td>
<td>Y</td>
<td>68%</td>
</tr>
</tbody>
</table>

- Intercooling is essential
- Mass transfer enhancement by Spray Nozzle
- Better energy performance
PZ Over-Stripping without Intercooling

5 m PZ, 12% Inlet CO₂, Gas Rate 350 ACFM

- First time running over-stripping LLDG in Pilot Plant
- No solid precipitation observed
- Able to achieve adequate removal with comparable energy performance

<table>
<thead>
<tr>
<th>Solvent Rate</th>
<th>Titration LLDG</th>
<th>Intercooler</th>
<th>Spray Nozzle</th>
<th>Measured Removal</th>
<th>Heat Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>mol CO₂/mol alk</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>GJ/tonne CO₂</td>
</tr>
<tr>
<td>8.6</td>
<td>0.18</td>
<td>N</td>
<td>N</td>
<td>84%</td>
<td>2.48</td>
</tr>
<tr>
<td>14</td>
<td>0.25</td>
<td>N</td>
<td>N</td>
<td>80%</td>
<td>2.48</td>
</tr>
</tbody>
</table>
Conclusions

- **Advanced Flash Stripper**
 - 17 run: 2.1-2.5 GJ/ton CO$_2$ (5 m PZ)
 - 4 runs: 2.5-2.9 GJ/ton CO$_2$ (8 m PZ)
 - 25% heat duty reduction vs past campaigns (2SF)
 - Optimized rich solvent bypass reduced heat duty by 15%
 - 5 m PZ reduced duty because better heat transfer performance than 8 m PZ (viscosity)

- **Absorber**
 - 5 m vs 8 m PZ ~ 5% higher CO$_2$ removal
 - IC = 90 – 98% CO$_2$ removal
 - No IC = 68 – 84% CO$_2$ removal
Acknowledgements

- Members of CO$_2$ Capture Pilot Plant Project/PSTC
- URS/DOE Award DE-FE0005654
- MTR/DOE Award DE-FE0013188
- Raschig-Jaeger Technologies
- Emerson Process Management
- Texas Carbon Management Program

Disclaimer: “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”