CO₂ EOR Basics: Terms and Concepts

Scott M. Frailey
Illinois State Geological Survey

2011 IEAGHG
International CO₂ Capture and Storage
Summer School

July 17-22, 2011
Champaign, Illinois

Midwest Geological Sequestration Consortium
www.sequestration.org
Outline

• General Oil Recovery
• CO$_2$ Displacement Process
• Field Injection Options
• Summary
General Oil Recovery: Definition

- Fraction of oil produced compared to original oil in place
- Oil Recovery (E) is the product of *Microscopic* (E_D) and *Macroscopic* (E_V) displacement efficiency

$$E = E_D E_V$$
General Oil Recovery: Microscopic Displacement

- Microscopic Displacement
 - Initial oil saturation
 - Residual oil saturation

- E_D
- Process dependent
- Differs for
 - Water
 - CO_2
 - Chemical
Background: Oil Recovery

- Microscopic Displacement

Diagram:
- Matrix
- Pore Body
- Water
- Continuous Oil Phase
- Discontinuous Oil Phase

Labels:
- Oil
- Water
- Matrix
- Pore Throat
General Oil Recovery: Microscopic Displacement
General Oil Recovery: Macroscopic Displacement

• Macroscopic Displacement
 – Areal sweep efficiency \((E_A) \)
 – Vertical sweep efficiency \((E_I) \)

• \(E_V = E_A \cdot E_I \)

• \(E_V \)
 – Process dependent
 – Geologic heterogeneity
 – Injector/producer
 – Pattern
 – Spacing
General Oil Recovery: Macroscopic Displacement

• Areal Sweep Efficiency

(Plan View)
General Oil Recovery: Macroscopic Displacement

- Vertical sweep efficiency

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
<th>Layer 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ (red)</td>
<td>Oil (green)</td>
<td>CO₂</td>
<td>Oil</td>
<td>Oil</td>
</tr>
</tbody>
</table>

Scale: Feet
CO$_2$ Displacement Process

- Phase Behavior and PVT Properties
 - Liquid-like CO$_2$
 - Gas-like CO$_2$
- Immiscible/ Miscible Conditions
- Reservoir Pressure and Temperature
- Displacement Mechanisms
CO$_2$ Phase Behavior: Pressure Temperature Diagram

- Critical Temperature: 87.7 °F
- Critical pressure: 1073 psia

Liquid or Gas
(high density, low density)
CO$_2$ PVT Properties: Viscosity

- CO$_2$ Viscosity plot
- Greater Viscosity: lesser difference between oil and water density.
- Less viscosity difference leads to improved oil recovery
CO$_2$ PVT Properties: Density

- CO$_2$ Density plot
- Higher density; less difference between oil and water density.
- Less density difference leads to improved oil recovery

Fig. 8.33—CO$_2$ density (from Refs. 42 and 43).
Immiscible CO$_2$/Oil Mixture

- Temperature < 88 °F
 - pressure less than saturation pressure: gas
- Temperature > 88 °F & low Ppressure < MMP (Minimum Miscibility Pressure)

- Much less recent research for Immiscible CO$_2$
Miscible CO$_2$/Oil Mixture

- Temperature < 88 °F
 - pressure greater than saturation pressure: liquid
- Temperature > 88 °F & high pressure > MMP (Minimum Miscibility Pressure)
Displacement Mechanisms

- CO$_2$ is a solvent to crude oil
- CO$_2$ is used in core labs as a solvent to clean core of crude oil
- Displacement Conditions
 - Miscible
 - Multicontact
 - Miscibility Pressure
 - Immiscible
Displacement Mechanisms

- Multicontact Miscibility
 - Vaporizing/condensing process
 - Intermediate hydrocarbons from crude oil vaporize into the CO$_2$
 - CO$_2$/HC enriched gas becomes miscible with crude oil
Displacement Mechanisms

- Multicontact Miscibility

Low viscosity CO$_2$ moves through the crude oil vaporizing intermediate hydrocarbons. Eventually hydrocarbon enriched CO$_2$ becomes miscible with the crude oil.
Reservoir Mechanisms

• Positive Mechanisms
 – Oil viscosity reduction
 – Oil swelling
 – Oil surface tension reduction
 – Residual oil decrease
Reservoir Mechanisms

- **Negative Mechanisms**
 - \(\text{CO}_2 \) viscosity < Oil viscosity
 - \(\text{CO}_2 \) viscous fingers
 - \(\text{CO}_2 \) density < Oil density
 - Gravity override
Field Injection Options

- Continuous CO$_2$/Water Slug
- Water-Alternating-Gas (WAG)
Field Injection Options

- Continuous CO$_2$/Water Slug
Field Injection Options

• Continuous CO$_2$-Disadvantages
 – Early CO$_2$ breakthrough
 • Poor areal efficiency
 • Poor vertical efficiency
 – Large volume of CO$_2$
Field Injection Options

- Water-Alternating-Gas (WAG)
Field Injection Options

- WAG-Disadvantages
 - Water sensitive formations impaired
 - Water injection decreases with time
 - Operational: Corrosion (producing wells)
Field Injection Summary

• Methods designed to
 – Reduce CO$_2$ velocity
 – Increase macroscopic displacement efficiency
 – Reduce volume of CO$_2$ required/sequestered
Oil Reservoirs: Geologic Storage

- Compressibility (mixes with free gas phase).
- Soluble in crude oil
- Soluble in water (connate and/or waterflood water)
- Adsorption to some clay minerals
- Replacing oil and gas volume produced
Summary

- CO$_2$: gas-like viscosity, liquid-like density
- Liquid or critical CO$_2$ preferred for larger stored mass. (higher density)
- CO$_2$ is proven to increase oil production in oil producing basins where naturally occurring CO$_2$ reservoirs exist.
 - Miscible proven in the lab and field
 - Immiscible proven in the lab
CO₂ EOR Basics: Terms and Concepts

Scott M. Frailey
Illinois State Geological Survey

2011 IEAGHG
International CO₂ Capture and Storage
Summer School

July 17-22, 2011
Champaign, Illinois

Midwest Geological Sequestration Consortium
www.sequestration.org