CCS Current Status & Confidence Building

Harry Audus
IEA Greenhouse Gas R&D Programme

Workshop on Confidence Building in the long-term effectiveness of CO₂ Capture and Geological Storage

24th & 25th January, 2007, Tokyo
Introduction

- OBJECTIVE: Set the scene for the workshop discussion
- Review the current status of CCS
 - International acceptance
 - Technology status
 - Regulatory issues
- Where we need to get to for wide scale implementation?
 - What are the challenges we face?
International Acceptance (1)

- Significant progress in this area
- IPCC Special Report on CO₂ capture and storage
 - CCS recognised as a mitigation option
 - National emissions accounting
 - Emissions trading

www.ieagreen.org.uk
International Acceptance (2)

- Storage under the sea bed
 - Important breakthrough in 2006 – sets precedent
 - Storage under seabed will be legal under terms of London Convention 1996 Protocol
 - Legal Working Group agreed to amend Annex 1 of Protocol to the Convention to allow CO2 to be included under: ‘wastes that can be disposed of’
 - Only in sub-sea geological structures,
 - The waste is overwhelmingly of carbon dioxide,
 - No wastes or other matter are added.
 - IEA GHG working with others on guidance for sequestration
 - Example concern – acid gas reaction with storage seal
International Acceptance (3)

- Need agreed outline risk assessment & management framework
- Consistent guidelines needed to be developed
- Initiatives are underway:
 - IEA Legal Issues workshop & Report
 - EU - DG Environment
 - IEAGHG working on ‘Sources of Best Practice’
 - Many others
International Acceptance (4): Early ‘Best Practice’ example

Best Practice Manual
from
SACS - Saline Aquifer CO2 Storage Project

Statoil
Appendix A
ExxonMobil
Norik Hydro
TotalE
tnaEl
t
CEM

IEA Greenhouse Gas R&D Programme
Schlumberger Research
European Commission

Published by
Appendix A
Statoil, Research Centre, N-7005 Trondheim, Norway

Edited by:
- Sam Holloway, British Geological Survey (BGS) (editor)
- Andy Chadwick, British Geological Survey (BGS)
- Erik Lindeberg, Statoil Petroleum
- Isabelle Czernichowski-Lauriol, Bureau de Recherches Geologiques et Minières (BRGM)
- Rob Arts, Netherlands Organisation for Applied Scientific Research (TNO)
International Acceptance (5): Developing Countries

• ‘Capture-ready’ concept: must include a ‘feasible’ store
 +

• International standards for CCS limited
 • ISO 14064 GHG accounting

• Kyoto Protocol route:
 • The Clean Development Mechanism (CDM)
 • CDM option was raised at COP11/MOP1 but a decision was deferred – for 2 years!
 • Outstanding issues from COP/MOP:
 • Permanence
 • Additionality
 • Project boundaries
 • Project leakage (physical, accounting)
Technology Status
Technology Status (1)

- Most actual activity is in the oil and gas sector
 - CO₂ Capture
 - Amine scrubbing demonstrated at 1Mt/y scale in oil and gas field operations
 - Sleipner and In-Salah
 - Not power generation
 - 3,100km pipelines mostly in North America transporting CO₂ for EOR operations
 - Several large projects injecting CO₂ at 1Mt/y scale
 - Sleipner and In-Salah – deep saline aquifers
 - Weyburn – oil field
Technology Status (2): Commercial-scale CCS operations

Images Courtesy of BP, Statoil, and PTRC

NOT POWER GENERATION
Technology Status (3): Monitored CO$_2$ Storage

Over 5000 emission sources

One 500MW coal-fired power station

In Salah (2005)

Weyburn (2000)

Sleipner (1996)

Year

Millions of tonnes of CO$_2$

0 5 10 15 20 25 30 35 40
Technology Status (4): Capture Issues

- Capture
 - Represents 75% of cost of CCS chain
 - Need to drive this cost down
 - IEA GHG work indicates 20-40% cost reduction
 - 3 credible options
 - Pre-, post-, oxy-
Technology Status (5): Capture Scale-up

- Bench scale (simulated flue gas)
- Pilot scale activity (on flue gas slip-stream)
 - EU Castor – 25 tCO₂/d, Denmark
 - MHI -10 tCO₂/d, Nagasaki, Japan
 - ITC – 8 tCO₂/d, Boundary Dam, 8 tpd
- NEXT STEP: Demonstration – with integrated operation
Technology Status (6): Power Sector CCS Projects

- Sask Power
- FutureGen
- BP DF2
- BP DF1
- RWE
- EoN
- Vattenfall
- Hypogen
- nZET
- ZeroGen

www.ieagreen.org.uk
Technology Status (7): CO2 Storage Demonstration Projects

50 Acid Gas Injection in North America

4 New CO2-EOR Pilots in Canada

70 CO2-EOR projects in U.S.A.

Key
- ECBM projects
- EOR projects
- Gas production fields
- Saline aquifer

Penn West

Alberta ECBM

Teapot Dome

Rangely

Burlington

Frio

Weyburn

Mountaineer

West Pearl Queen

K-12B

CO2SINK

RECOPOL

Sibilla

In Salah

Qinshui Basin

Hokkaido

Nagaoka

Gorgon

Snohvit

Sleipner

Cerro Fortunoso

www.ieagreen.org.uk
Technology Status (8): Geological Storage

- It is believed sufficient capacity available
 - Oil and gas fields provide significant global storage capacity
 - Saline formation capacity large but not well documented
 - Can capacity of a store be defined?

- CCS will need to rely heavily on deep saline aquifers
 - Aquifer injection demonstrated at Sleipner and In-Sala

- Need additional effort to quantify both the storage capacity and storage integrity of deep saline aquifers
 - Need to demonstrate effective containment
 - Maintain integrity in future alongside continued oil and gas exploration
Technology Status (9): CO2ReMoVe

- Will study and compare results from:
 - Sleipner
 - Snohvit
 - In Salah
 - CO₂ SINK (Ketzin)
- Best practice guidelines
 - Identification of suitable sites
 - Protocols and tools for monitoring and verification
Technology Status (10): Safety/Permanence

- For a CCS operation we cannot say there will be never be leakage
- There will be fugitive emissions from pipelines and surface facilities (‘handling’)
 - Low level and intermittent
 - Can quantify such emissions
- Emissions from the storage formation
 - If they occur, will be very low level (seepage) and persist over long time periods
 - Could cause local environmental impacts
 - Remediation
Technology Status (10): Safety/Permanence

- Need to engineer for zero leakage from the storage formation
- 5 component plan:
 - Detailed site characterisation
 - Reservoir simulation
 - Risk assessment
 - Monitoring programme
 - Remediation programme
Technology Status (11): Monitoring Experience

• No firm evidence from any of the large scale projects that leakage is occurring
 • Weyburn (3 years), Sleipner (10 years), Rangeley (20 years)
• Surface seepage at Rangely has been suggested but there are doubts about the data
• Monitoring lifetimes are short
• Cannot quantify seepage
 • Nor determine/specify a generic leakage rate
Regulatory Issues
Regulatory Issues (1): Status

• Several countries have amended/are amending existing laws to allow CCS
 • USA – US EPA looking at adapting UIC Programme rules
 • Netherlands, adapted it Mining Law for K-12B
 • Australia adapted it regulations for Gorgon
• One major issue that needs to be resolved is that of long term liability
 • Who is liable for leakage after abandonment?
 • Insurance bonds or similar funds required?
Regulatory Issues(2): Developments

- Need for regulatory systems essential to implement projects in near term
- Quicker to amend existing regulations than develop new ones
 - Europe
 - Netherlands - adapted existing laws
 - UK - regulatory task force established
 - Norway - permitting CCS under existing laws
 - USA
 - Adapting legislation
 - Australia
 - State and Federal Governments involved
 - Gorgon review under way
Challenges
Challenges (1): Implementation

- How do we get from where we are now:
 - Several storage demonstrations but not based on power generation
 - Plans for CCS demonstrations but major funding required
- To wide scale implementation with thousands of commercial scale CCS projects?
Challenges (2): Near-term Implementation

- Currently we are seeing developments in the gas sector
 - CO2 removal required to meet gas pipeline standards
 - Low incremental cost for CCS
- CO2-EOR projects not developing as could have been expected worldwide
 - High oil prices could be expected to stimulate development of EOR projects
Challenges (3): CO2-EOR opportunities

- North Sea seen as an opportunity for CO2-EOR
- Studies by NPD and UK DTI said that it is uneconomic
 - CO2 supply and infrastructure requirements
- New commercial projects now being planned
 - BP DF1 development at the Miller field
 - Statoil/Shell ‘Halten’ development
Challenges (4): CO2-EOR Continued

• New initiative in Norway to create a CO$_2$ supply infrastructure
 • Part public sector/part private sector enterprise
 • Establish a CO$_2$ supply infrastructure for Norway to realise its CO$_2$-EOR potential
 • Leave behind a supply infrastructure that can then be used for CO$_2$ storage
 • Announced in Autumn 2006
Challenges (5): Power Sector

- Largest sources of CO₂ emissions
 - 10.9Gt/y in 2000
 - 5009 emission sources
- For power generation applications need to scale up capture plant to 3 to 5Mt/y scale
 - Replicate several thousand times
- Need to expand pipeline infrastructure to be comparable to that of natural gas in regions
 - 150,000 km pipelines in North America and Europe
 - Not a major technical barrier
 - Routeing issues to be resolved
 - How will we finance that infrastructure development?
Challenges (6): Power Sector continued

- Power sector happy to sell electricity over the fence to the market
- May prefer to act in the same way for CO2
 - Pipelines and geological activities not traditional skills in power sector
- How do we establish a storage industry to work with the power sector?
- Will emissions trading be sufficient to establish such an industry?
- Early market volatility in ETS may not stimulate investment at present
Challenges (7): Perception

• One of the key questions usually asked is:
 • Is it safe?
 • Will the storage formations leak?
 • What are the environmental impacts if it leaks?
• This is a question we must answer satisfactorily
• Important issue to resolve to get general acceptance for this technology
 • Governmental acceptance building
 • Public awareness is low and could be a barrier to wide scale implementation
Challenges (8): Public Awareness

• Public awareness on CCS is limited
• Need to build public awareness to ensure projects do not meet public resistance
• Need urgently start to an education programme
 • Open and transparent
 • Happening at pilot project scale in some countries
 • Australia, Europe, Canada and USA
• Need more concerted engagement programmes
 • Netherlands - CATO programme
 • Japan
• Need more demonstration projects with public engagement
 • In-Salah
• Need to be aware that local issues could dominate in planning reviews
Challenges(9) : CO₂ Containment

• For a CCS operation we cannot say there will be never be leakage

• Industry statistics show there will be fugitive emissions from pipelines and surface facilities
 • Low level and intermittent
 • Can quantify such emissions

• These emissions are distinct from the storage formation events
 • Is a leak from a well a fugitive emission or leakage from the storage formation?
Challenges (10): CO₂ Containment continued

- Need to build a strong case for zero leakage from the storage formation
 - Limited data to support the case to date
 - Only a few monitoring projects
 - Performance assessment work at an early stage of development
 - Can refer to natural and industrial analogues
Finally, Some relevant IEAGHG activities: Studies (1)

Published in 2006:

- Safe storage – analogies with the natural gas industry
- Permitting issues for CCS
- Storage monitoring decision support tool
- Environmental impact of solvent scrubbing
Some relevant IEAGHG activities: Studies (2)

- Some of the studies in progress:
 - CO$_2$ Capture-ready plant
 - Remediation of leakage from geological stores
 - Sub-sea ecosystem impacts
 - Regional storage capacity – India
 - Risk assessment and regulatory needs
 - Environmental impact frameworks
 - Terrestrial ecosystem impacts of CO$_2$ leakage
Summary

• Given a perspective on the current status of CCS
• The big challenge that lies ahead is wide scale global implementation
• Current key barriers to implementation
 • Convincing people storage is safe and secure
 • Creating a value chain for CCS
 • More CO2-EOR projects in near term
 • Power sector in medium term
 • Establishing CCS projects in developing countries
• Hopefully I’ve set the scene for the discussion.
THANK YOU
ANY QUESTIONS?

Further details on projects listed can be found at:
www.Co2captureandstorage.info