Agenda

1. About Pöyry
2. Introduction to study
3. Thoughts on an intermittent world
Pöyry Plc – global consulting and engineering company
Pöyry Energy Consulting

Strategy

Business Operation

Valuation & Financing

Sustainability

Over 250 energy market experts in 15 offices across Europe:

- Copenhagen
- Berlin
- Moscow
- Paris
- Vienna
- Düsseldorf
- Madrid
- Oslo
- Stockholm
- Villach
- Helsinki
- Milan
- Oxford
- Stavanger
- Zurich
Agenda

1. About Pöyry
2. Overview of study
3. Thoughts on an intermittent world
Study objectives

‘How could the impact of intermittent generation, required to meet targets for renewables and decarbonisation of generation, affect the wholesale energy markets in GB and Ireland?’

Specific areas of investigation

• Market prices
• Plant operation
• New thermal generation
• Wind revenue
• Reserve and response
• Interconnection and transmission
• Market arrangements
• Security of supply
## Study summary

### Overview

- Almost £1m budget
- Nov 2008 – May 2009
- 5 Workstreams
- 4 Steering Group meetings
- 2 major presentations
- Final report

### Sophisticated computer modelling…

- 2.8 million wind records
- Each model run generates 50 million records, 840,000 prices and a 1.5GB database
- A total of 150GB of data generated from the study

## Study membership

### 6 Founders

- Centrica
- DONG
- EirGrid
- ESB/I
- National Grid
- RES

### 10 Members

- Bord na Mona
- Committee on Climate Change
- DECC
- Bord Gáis
- RWE
- EDF Energy
- Premier Power
- Scottish Power
- CER/NIAUR
- Premier Power
- SWS Energy

- 4 government bodies
- 3 grid operators
- 4 established players/incipients
- 2 wind power operators
- 3 new entrants
Summary of modelling

Zephyr has been designed specifically to answer the key questions about how intermittency could affect the GB wholesale market

**Principles**

- Detailed underlying wind data  
  - Hourly data for 8 years for 36 sites

- History as basis  
  - Wind, availability and demand  
  - 8 historical simulations for each future year

- Zonal analysis

- Value of capacity

- System security standard

**Platform**

- Demand module
- Availability module
- External border module
- Commodity price data
- Reserve data
- Plant data
- Wind/ Wave/ Tidal (WWT) module
- Value of Capacity module
- Zonal data
- New build of generation

- Prices
- Load factors
- Interconnection
- Plant revenue
- Constraints

- 8760 hours per year
- Mixed integer linear program
- Plant dynamics
- Zonal analysis

8
1. Introduction to study
2. Overview of study
3. Thoughts on an intermittent world
Summary of ‘Core scenario’

The study was focused around a Core scenario. It does not represent a base case but instead provides a ‘stress-test’ with a high percentage of generation from renewables.

Installed capacity assumptions in GB

- Demand was assumed to grow at around 0.4% p.a.
- Oil price ~$70/bbl
- Coal price ~$70/tonne
- Carbon price ~€37/tCO₂
- New build of CCGT and coal is market determined
- New build of renewables, nuclear and coal CCS is ‘non-market determined’
The study assumed wind generation build patterns across the UK and the ROI

Hourly historical wind speed data for each region was used to simulate wind generation

Installed capacity by region: 2020

GB Capacity: 32.7GW
SEM Capacity: 6.1GW

Installed capacity (MW):

Installed capacity by region: 2030

GB Capacity: 43.1GW
SEM Capacity: 7.9GW
January 2030 (based on 2000 data)

The model allows highly detailed simulations of future years based on historical weather data. The example below shows January 2030 based on actual wind data from 2000.

Prices spike at £7700/MWh.

Prices may become highly volatile, and driven increasingly by wind generation.

Wind generation is very variable, leading to periods of very high generation, and periods of very low generation.

Thermal plant will have to operate in a different manner, with lower load factors and higher risk.
Understanding the ‘demand net wind’

Operating space for thermal plant will decrease

Demand and demand net wind duration curve for GB in 2030

- At present, there is a continuous requirement of around 30GW
- In the core scenario demand net wind varies between 0-65GW
- Less need for base load generation
Plant operation profiles will change radically
Not only will thermal plant load factors be squeezed by intermittent and baseload generation, but operating regimes will change.

**Load factor by plant type – GB**

**Starts per year**

Data from Core scenario
Sensitivity of prices year on year

If security of supply is maintained, prices will become very peaky – with prices over £7000/MWh and less than zero by 2030

2020

2030

Prices spike at £7700/MWh
GB faces an investment conundrum

Earning the returns below will become increasingly difficult, as the scarcity value has to be captured in a smaller number of hours.

Capacity margins in GB

- LCPD and (possibly) the IED will retire old mid-merit and peaking generation
- With a continuation of BETTA, the capture of capacity revenue will become more difficult
- Differences in outcomes between a BETTA and SEM market are stark
Summary

• A high wind world will look very different to currently

• The thermal system will flex in response to the wind
  • Extremes will become more important
  • Spiky prices
  • Uncertainty and risk
  • Changing operating patterns
  • Investment conundrum in GB

• Is CCS well suited to this environment?

• Potential effect on gas network?
Gas intermittency project

A multi-client gas intermittency project began in September, investigating the implications on the gas network

**Areas of investigation**

- Market and investment
- Value of storage and flexibility
- System operation
- Regulation

**Daily gas demand**

Projected power gen. gas demand 2030
Actual power gen. gas demand 2007

MCM

01-Oct to 31-Dec