What have we learnt to date from large-scale CCS projects?

IEA Greenhouse Gas R&D Programme
John Gale, Tim Dixon, Brendan Beck, Mike Haines

Climate Change Congress, Copenhagen 10-12 March 2009
What have we learnt to date - projects?

- Review current operational large-scale CCS projects
 - Assess learning from projects
 - Identify gaps in the global CCS project portfolio
- Focus on projects relevant to full-commercial scale operation
 - Includes:
 - Large-scale pilot
 - Demonstration
 - Commercial
 - Excludes
 - Small and medium pilot
 - Lab scale
- Define criteria – Identify projects – Collect information - Analyse
Criteria for large-scale operational projects

• Indicative criteria defined for ‘large-scale operational projects’
• Was, or had been, operational by the end of 2008, and either:-
 • Captures over 10,000 tCO₂ per year from a flue gas
 • Injects over 10,000 tCO₂ per year with the purpose of geological storage with monitoring
 • Captures over 100,000 tCO₂ per year from any source
 • Coal-bed storage of over 10,000 tCO₂ per year
 • Commercial CO₂ EOR is excluded unless there is a monitoring programme to provide learning.
• Does not need to be fully integrated

• Added term ‘large-scale operational’ to IEA GHG Projects database
<table>
<thead>
<tr>
<th>Projects identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellingham Cogeneration Facility</td>
</tr>
<tr>
<td>CASTOR Project</td>
</tr>
<tr>
<td>Great Plains Synfuel Plant</td>
</tr>
<tr>
<td>IMC Global Soda Plant</td>
</tr>
<tr>
<td>In Salah</td>
</tr>
<tr>
<td>K12-B</td>
</tr>
<tr>
<td>Ketzin Project</td>
</tr>
<tr>
<td>MRCSP - Michigan Basin</td>
</tr>
<tr>
<td>Nagaoka</td>
</tr>
<tr>
<td>Otway Basin Project</td>
</tr>
<tr>
<td>Pembina Cardium Project</td>
</tr>
<tr>
<td>Petronas Fertilizer Plant</td>
</tr>
<tr>
<td>IFFCO CO2 Recovery Plant - Phulpur</td>
</tr>
<tr>
<td>Chemical Co. “A” CO2 Recovery Plant</td>
</tr>
<tr>
<td>Project Name</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Bellingham Cogeneration Facility</td>
</tr>
<tr>
<td>CASTOR Project</td>
</tr>
<tr>
<td>Great Plains Synfuel Plant</td>
</tr>
<tr>
<td>IMC Global Soda Plant</td>
</tr>
<tr>
<td>In Salah</td>
</tr>
<tr>
<td>K12-B</td>
</tr>
<tr>
<td>Ketzin Project</td>
</tr>
<tr>
<td>MRCSP - Michigan Basin</td>
</tr>
<tr>
<td>Nagaoka</td>
</tr>
<tr>
<td>Otway Basin Project</td>
</tr>
<tr>
<td>Pembina Cardium Project</td>
</tr>
<tr>
<td>Petronas Fertilizer Plant</td>
</tr>
<tr>
<td>IFFCO CO2 Recovery Plant - Phulpur</td>
</tr>
<tr>
<td>Chemical Co. “A” CO2 Recovery Plant</td>
</tr>
</tbody>
</table>

Captions:
- Capture over 100ktCO₂
- Injection over 10ktCO₂ for storage
- Monitored EOR over 10ktCO₂
- Capture over 10ktCO₂ from flue gas
- Coal bed storage over 10ktCO₂
Capture over 100ktCO₂
Injection over 10ktCO₂ for storage
Monitored EOR over 10ktCO₂
Capture over 10ktCO₂ from flue gas
Coal bed storage over 10ktCO₂
Information Gathering

- 28 large scale operational projects identified
- Each project has been asked to provide information using a questionnaire
- 18 Responses so far (6th March 2009)

- Analysis of projects in 2 parts:
 - Extent of project coverage
 - Key learning from projects
Extent of coverage - Capture

- 13 plants capturing from combustion processes
 - 11 post-combustion
 - 1 pre-combustion
 - 1 oxyfuel
- 9 projects source CO$_2$ from industrial processing (Natural gas separation, ammonia, LNG, hydrogen production)
- Multiple fuels represented
 - Hard coal
 - Lignite
 - Natural Gas
 - Industrial processes
- Over 10Mt of CO$_2$ captured per year
Extent of coverage - Transport

- Pipeline
 - Single sink source pipelines
 - Multiple source-multiple sink pipeline networks
- Truck
- Cross-border transport
- Transport over 860km
Extent of coverage – Injection

- Over 10Mt injected per year
- Multiple purposes for injection
 - Storage
 - EOR
 - ECBM
Extent of coverage – Storage Formations

- A variety of storage formations
 - Sandstone
 - Carbonate
 - Coal
Porosity

- Min
- Typical
- Max
Extent of coverage – Storage amounts

• There are six projects that store over 40,000t CO$_2$ per year
• All projects combine store almost 6Mt per year
• Total of 57 project years of CO$_2$ storage experience
• Over 40Mt of CO$_2$ stored
Net CO₂ Storage per Year
Extent of coverage – Monitoring

- 2D seismic
- 3D seismic
- 4D seismic
- Vertical seismic profiling
- Cross-well seismic
- Electrical conductivity
- Microseismic
- Passive seismic
- Soil gas sampling
- Detector arrays
- Eddy covariance

- Observation wells
- Time lapse microgravity
- Well temperature and pressure
- Well logs
- Tracers
- Ground water geochemistry
- Interferometry
- Satellite imaging
- Tilt meters
Extent of coverage vs ZEP project matrix

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Lignite/co-firing with Biomass</th>
<th>Pre-combustion, variant A</th>
<th>Cross-border pipeline</th>
<th>Offshore depleted oil & gas field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 1</td>
<td>Red</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Gas</th>
<th>Post-combustion, variant A</th>
<th>Pipeline</th>
<th>Onshore structural deep saline aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 2</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Hard Coal</th>
<th>Oxy-fuel, variant A</th>
<th>Shlp</th>
<th>Offshore open deep saline aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 3</td>
<td>Green</td>
<td>Green</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Lignite</th>
<th>Oxy-fuel, variant B</th>
<th>Pipeline</th>
<th>Onshore structural deep saline aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 4</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Hard Coal</th>
<th>Pre-combustion, variant B</th>
<th>Pipeline</th>
<th>Offshore depleted oil & gas field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 5</td>
<td>Green</td>
<td>Green</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Hard Coal</th>
<th>Post-combustion, variant B</th>
<th>Pipeline</th>
<th>Onshore open deep saline aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 6</td>
<td>Green</td>
<td>Green</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archetype</th>
<th>Hard Coal</th>
<th>Post-combustion, variant B</th>
<th>Pipeline</th>
<th>Onshore open deep saline aquifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archetype 7</td>
<td>Green</td>
<td>Green</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

Demonstrated in operational large projects

Not demonstrated in operational large projects

Extent of Coverage

- If integrated CCS from electricity production is a 4 link chain:
 - Electricity production
 - Capture
 - Transport
 - Storage
- 2 and 3 link chains have been demonstrated over 1Mt CO$_2$ per year
Learning From Projects
- preliminary and not yet complete

• Commonalities
• Areas for additional collaboration
• Areas for additional future consideration
• Themes in key learning points
Commonalities

- Injectivity
 - Very important
 - Multiple examples of issues and solutions
- Material corrosion
 - Less problems than expected
- Seismic
 - Effective for monitoring the CO₂ plume - where it can be used
 - Not quantitative beyond a certain resolution
 - Expensive
Commonalities cont.

- Electrical conductivity
 - Seen as promising, not yet used commercially
- Microseismic
 - Doesn’t add a lot to monitoring portfolio
- Monitoring overlying layers
 - Very good way of demonstrating seal integrity (Especially to non-experts)
- Downhole sampling
 - Better sampling at reservoir conditions valuable
 - Not yet practiced by many projects
Areas for Additional Collaboration

- Design of a monitoring programme
 - Proving integrity
 - Enough experience to move on from expansive research programmes to start designing commercial monitoring programmes
- Comparison of hydrate experience
Areas for Additional Collaboration cont.

• Injection performance
 • Different issues of impairment
 • Varied experience of injecting into depressurised formations

• Material corrosion
 • Successful management of material selection and corrosion - could reduce costs for future projects
Themes in Key Learning Points

- Effectiveness of monitoring techniques – what to drop and what to develop
- Injectivity – prediction, restoration and enhancement
- Dealing with hydrates
- Performance of materials in CO\textsubscript{2} environments
- Well designing, placing, monitoring
What has not been covered

• More on capture and on regulatory issues

• Commercial gasification processes
 • Have not been reviewed here but offer considerable learning for pre-combustion capture

• CO$_2$ transport by ship
Preliminary Conclusions

- Elements of CCS are operating at large scale
- Integrated CCS is operating at large scale, just not from power plant
- There is a lot that has been learnt from existing projects, but more can be done to share the learning
- CCS industry can build on existing projects’ experience
- Increasing IPR issues will affect sharing learning
IEA Greenhouse Gas R&D Programme

- General - www.ieagreen.org.uk
- CCS - www.co2captureandstorage.info