IEA Greenhouse Gas R&D Programme


12th CO2 GeoNet Open Forum

Lydia webLast week I was fortunate enough to be able to attend CO2GeoNet’s Forum, this year with the encouraging focus of ‘Driving CCS towards Implementation’. CO2GeoNet is a European Network body that currently comprises 26 research institutes from 19 European countries, and brings together over 300 researchers with the multidisciplinary expertise needed to address all aspects of CO2 storage.

The two day conference began by looking at the role of CCS in national mitigation strategies. A keynote by Niels Berghout from the IEA set the tone of the day, showing the significant progress CCS has made in the last 20 years (especially given the ups and downs that have been experienced in policy and political support). It was emphasised that CCS must now go beyond ‘clean coal’ to meet the challenges governments face to meet the ambitious Paris Agreement targets. This includes reducing emissions from industrial processes alongside power related sources, a task which is unlikely to be achievable without CCS.

A regular discussion throughout the forum was that to implement CCS, there needs to be an incentive and the motivation of avoiding climate change alone is currently insufficient without more economic benefits. IPCC reports have indicated the wide-spread commercial scale deployment of CCS is required as soon as possible in order to avoid the ‘2°C Scenario’. Currently this is not happening as quickly as it needs to with industry and government both pointing the finger at who is meant to be the driving force in implementing CCS commercially.

The second day focused on showcasing results from EU projects and the lessons learnt from international CCS projects. Global perspectives included updates from Shell (Quest), CO2CRC (Otway), RITE and the Kansas Geological Survey. The European project updates included talks from Ketzin, UK GeoEnergy Test Bed and Sintef of the Rotterdam Nucleus. Gassnova ended the day with an update on the upcoming Norwegian CCS projects and specifically the Smeaheia site. It was great to hear about so many different CCS projects with 22 large-scale CCS projects now in operation or under construction globally and a combined CO2 capture capacity around 40 million tonnes per annum (Mtpa).

One of the main conclusions that emerged from the forum was that to reduce the counter party risk (which is currently increasing the price of projects) there is the need for regional co-ordinating bodies and a hub and cluster approach. In particular, shared transport systems were considered essential in driving CCS forward.

Numerous workshops were held after the forum with a personal highlight being “Bringing CCS to new regions” looking at how to bring CCS to developing countries. The panel discussion highlighted the particular importance of communication and the language used when promoting CCS. The potential CCS has for producing more jobs and enabling cleaner industry needs to be the focus of future discussions rather than stressing the importance of climate change, as short-term economics are likely to play an even more vital role than they currently do in Europe.

Overall the forum provided informative lively debate on how to drive CCS forward, and how the incentives would vary from country to country. Carbon capture technologies have been tested, safe CO2 storage has been proven and CCS is considered by many as essential for climate change mitigation. The passion for CCS from those attending was clear and we must hope that Europe’s policy and regulations to support its implementation are to follow.


IEAGHG 51st ExCo

Becky Kemp cropThe 51st bi-annual IEAGHG ExCo meeting has come to a close in the exciting Canadian city of Edmonton. The two day IEAGHG Executive Committee meeting began on Tuesday 9th May and was held in the wonderful Westin hotel, Edmonton. This regular meeting is held twice yearly, at different locations across the world each time, and gives IEAGHG an opportunity to provide our Members and Sponsors with programme progress, an update of recently completed and on-going activities and to approve any future work to be undertaken. It also gives our Members a chance to report back to the Programme on their activities over the last 6 months and any activities planned for the near future.

51 ExCoThe Programme’s ExCo Members were given a really interesting presentation from Wilfried Maas on Shell’s activities and also an overview of IEAGHG’s recent activities which included outcomes from GHGT-13 and an update on the High Temperature Solid Looping Cycles network along with an interesting update from Juho Lipponen on IEA’s activities. Tim Dixon eagerly presented on COP22 and COP23. There were also presentations on reports which are on-going and also proposals given for potential new studies for IEAGHG to carry out.

Members agreed to take forward 4 new studies this year – so do stay tuned to see the progress in these various areas; more details will come soon.

The ExCo dinner at this meeting was held in the hotel itself, where ExCo were treated to a private dining experience. Members were all very eager to discuss the outcomes of the first day and to have a chance to relax and enjoy the wonderful food.

A full-length article on the 51st IEAGHG ExCo meeting will be available in the upcoming June edition of the IEAGHG Greenhouse News.


Advancing Environmental Monitoring for Offshore CO2 Storage Projects.

New TD 2The STEMM-CCS project held its first annual meeting last week. This is an EU Horizon 2020 funded project that will develop and test environmental monitoring at a controlled release of CO2 in the North Sea. The project is coordinated by The UK’s National Oceanography Centre, with a consortium of partners representing the leading marine science organisations in the EU and Norway. IEAGHG is on the Stakeholder Advisory Board.

STEMMThis first annual meeting was hosted by GEOMAR in Kiel. Good progress is being made especially on sensor development, and planning is well advanced on the development of the engineering and techniques to collect data and the planning of the research cruises using UK and German research ships. GEOMAR also hosted a visit to their marine research facilities to see up close some survey hardware which will be used.

This is an exciting and unique project that will advance offshore environmental monitoring, specifically CO2 leakage detection and quantification, and CO2 storage site characterisation. More details will be shared and discussed at the forthcoming IEAGHG Monitoring Network meeting in June 2017 in Michigan.

For more information and updates see .


Early Career Researchers Winter School 2017

Lydia webThe Early Career Researcher Winter School held at the EPSRC Centre for Doctoral Training took place last week and with thanks to the UKCCSRC I was able to attend. It was a busy week with 7 keynote speakers covering topics including geological storage, the current status of CCS both internationally and in the UK, the economics and financing of projects and the energy industry as a whole.

The group work involved looking over recent UK energy sector consultation papers (a first for many in the room, myself included!). This group task gave all the attendees an insight into how their current work could fit into a larger picture and the importance evidence based policy making.

A highlight of the week was a trip to GE’s research facilities in Rugby where we were given a tour of the model turbines currently being tested. The trip gave me a new insight into the importance of the power generator’s efficiency and therefore the need for ever developing engineering research. As a geologist, I must admit the thought of learning the basics of turbine engineering was daunting but I would like the thank GE for a great overview and interesting tour!

Many thanks to everyone involved, your hard work was very much appreciated!


News from Korea and Petra Nova at the 7th Korea CCUS International Conference.

TD 2The 7th Korea CCUS conference was held on Jeju island on 8-10th February. This annual conference brings together all the CCUS R&D in Korea. This is a respectably-sized conference, a total number of around 300 attended over the three days to hear presentations (in English) in three parallel streams: capture; storage; and CO2 conversion; plus some policy work, and further work was presented in posters.

The conference was organised by Korea Carbon Capture and Sequestration R&D Centre (KCRC). We were very pleased to attend, as Korean is a member country of IEAGHG. As well as showcasing Korean R&D, KCRC brought international updates in with plenary speakers from USA, Japan, China, and Italy. IEAGHG gave the introductory scene-setting on CCS and climate change from the Paris Agreement looking forwards.

The storage work presented at the conference included much work from the controlled release site EIT (Environmental Impact evaluation Test facility), on geochemical and tracer monitoring techniques for impacts in ground water and soil gas. The amount of work being generated from this site is impressive, reminding me of the ZERT facility in the USA.

The Korean work on CO2 capture includes on solvents for post-combustion capture and on membranes for pre- and post-combustion capture.

The CO2 conversion work covered various techniques of CO2 utlisation and conversion, including a focus on microalgae-based capture and product developments.

The plenary talk by Andrew Hlasko of US DOE on NRG’s Petra Nova project was particularly interesting, as this CCS project commenced full operation last month. It is capturing at the rate of 1.4mt CO2 pa, and sending the CO2 for EOR in West Ranch oil field Texas (in which NRG has a joint venture). This MHI capture plant with KS-1 solvent is scaled-up ten times the previous existing MHI plants around the world. To ensure the storage of CO2 they are using strict MMV protocol at the oil field. Also of relevance to this audience was that the large CO2 regenerator vessel was made in Korea and shipped in one piece to Texas. Petra Nova is the largest coal power station in the USA, at 3800MWe. Benefit was made from the learnings with the pilot CCS project with MHI capture technology at Southern Company’s Plant Barry. The DOE and NRG are proud that the Petra Nova project completed on schedule and within budget. I think this may have been the first conference to hear this much about the Petra Nova CCS project. The press release on becoming operational can be seen at

So all in all, with a wealth of Korean R&D on CCUS, an interesting two days in a rather stormy location on the edge of the Yellow Sea. The presentations will be available at .


GHGT-13 Panel Discussion on CO2 Utilisation and Conversion

67 JG imageThis was a lively well attended panel discussion which certainly sparked a lot of debate.  My takeaways from this were:

  • CO2 utilisation and conversion to chemicals is a hot topic in many countries, with many Governments funding research programmes
  • To meet the below 20C target set at COP22 we need mitigation options that permanently remove CO2 from the atmosphere
  • CO2-EOR is the leading form of CO2 utilisation and has the potential to store permanently some CO2
  • Manufacturing chemical products like methanol and urea do not permanently store CO2 and therefore are not mitigation options.
  • Utilising CO2 to make products like methanol and urea could help with the installation of capture plants on new industry processes, like SABIC’s capture plant on its polyethylene process in Saudi Arabia.
  • Utilising CO2 from chemical industry is not likely to help develop a transport infrastructure that could take significant volumes of CO2 to offshore storage sites in Europe.
  • Expecting large amounts of free renewable energy to be available to convert industrial CO2 to chemicals is improbable.
  • Some CO2 based polymers could conceivably last for 50-100 years but that is still not long enough as a mitigation option.
  • Mineralisation is a niche opportunity not a global solution and is at very best CO2 neutral as it only serves to recombine minerals that have been de-carbonated with the CO2 they lost during processing.

In short apart from CO2-EOR, coal utilisation is not a solution to climate change.


Data sharing initiatives launched at GHGT-13: CSDC and Ginninderra

67 TDcroppedAs GHGT-13 drew so many from the CCS world together in one place for a week it is not surprising that many take advantage to organise launch events there. Two involved the launch of projects’ datasets for wider use by the CCS community, one deep-focussed, one shallow-focussed. 

One was organised by Geoscience Australia and CO2CRC to launch their release of data from their controlled-release site at Ginninderra, near Canberra. Their research site has enabled scientists to simulate release of carbon dioxide (CO2) from the soil into the atmosphere under controlled experiment conditions, and to assess the performance of different monitoring technologies.

The project included development of world-leading monitoring techniques, including using mobile sensor and remote sensing technology to detect CO2 emissions and impacts. Monitoring results were found to depend on climatic conditions, groundwater levels and the extent of the soil zone above the water table. The results found significant horizontal movement in the near surface, fundamentally changing perceptions of how CO2 migrates and expresses itself at the near surface. Surface leakage was found to be patchy, a result similar to that observed in other controlled release facilities internationally.

A highlight of the work was improved quantification techniques to accurately measure emission rates. Results from a comprehensive assessment of soil flux techniques were presented in a technical session at GHGT-13. Over 20 monitoring techniques were trialled, with the datasets now available for free download via Geoscience Australia's website. The intention of this data release is to make the data available for comparison with measurements taken at other controlled release experiments, CO2 storage projects and natural analogues. This will hopefully facilitate the further development of greenhouse gas monitoring technologies, methods and monitoring strategies and increase our understanding of the migration behaviour and impact of near surface CO2 leakage.

For more information, including on how to access the data, see .

IEAGHG’s Environmental Research Network and Monitoring Network had the pleasure of visiting Ginninderra during the Networks’ meeting in Canberra in 2013 (see for the report of the meeting and visit see
The CO2 Storage Data Consortium (CSDC) also launched at GHGT-13. This is a new international collaboration for sharing reference datasets from CO2 storage projects in deep saline formations.

To increase efficiency of building capacity, confidence and competence in CO2 storage, this international consortium is developing a platform for sharing datasets from pioneering CO2 storage projects. CSDC promotes sharing of datasets on site geology, well data, geophysical monitoring data, and reservoirs data and models. Access to properly curated and well-understood data accelerates new development of site characterization methods, reservoir simulation and monitoring technologies.

The CSDC consortium will manage the datasets, the terms of access and facilitate dissemination. Datasets will be subject to terms of use and should be properly acknowledged. Participants in CSDC may be registered as users, sponsors, contributors or observers. A survey is in progress to assist the process of clarifying user needs and specifying a suitable repository for the data. To find out more contact: This email address is being protected from spambots. You need JavaScript enabled to view it..">This email address is being protected from spambots. You need JavaScript enabled to view it..

IEAGHG are very pleased to assist by being on the Steering Committee for CSDC.

Two great initiatives in sharing data, to facilitate wider learning from projects and so to assist CO2 storage developments around the world, much praise to all involved.


Happy Birthday Sleipner!

67 TDcroppedA Discussion Panel was organised to celebrate the 20 years of successful injection by Statoil at Sleipner, and how best to transfer knowledge globally. Statoil have been doing a good job over the years of sharing their seismic data (via IEAGHG) and other monitoring results at IEAGHG and other meetings, with very many papers published also.

So the world has benefited a lot from the experiences and data from Sleipner and from Snovit. The learning continues in new ways! I discovered that the Norwegian government has transposed the EU’s CCS Directive into Norwegian law in 2014, and then went through a permitting exercise for both Sleipner and Snovit in 2016. Both passed and were permitted, with some additional monitoring requirements. We look forward to learning more on the application of the CCS Directive to two more projects (ROAD was the first).

We also learnt about the considerable exercise on storage assessments by geological organisations in East and South East Asia in the CCOP CCS-M initiative, as presented by Sim Caluyong the project coordinator. This involves many countries in the region, showing case studies for Malaysia, Vietnam, Philippines, and the work towards a pilot injection (onshore) in Indonesia at the Gundih gas field.

The growing interest of Nigeria was also noted, arising from the Offshore Workshop held in Austin earlier this year (see IEAGHG report). The value of being able to re-use existing oil and gas infrastructure was emphasised.

Tip Meckel described the global offshore storage potential, some specific regional geological examples, and the scale-up challenges for the scale of global deployment required, hence the need for offshore storage as well as onshore.

Questions were posed to the panel and audience on how best to transfer knowledge, such as by workshops and by capacity building efforts for developing countries which could be funded by the UNFCCC’s CTCN and other such bodies. Questions were also posed from around the world on tectonic settings, and on cost savings from Sleipner and Snovit.

At the end, written comments were collected from the audience on the importance of Sleipner, and included:

“A very good project”

Happy Birthday Sleipner”

“Hopefully it motivates the other 999 projects we need!”

Thank you Sleipner! Named after an eight-legged horse in Norse mythology, it’s benefits continue to gallop around the world.


20 years of monitoring CO2 storage at Sleipner

Lydia webStatoil have been operating at Sleipner since 1996 marking twenty years of injection monitoring at the site. The monitoring programme has been shown to be a success proving both conformance and containment as well as including contingency plans. Repeated seismic and gravimetric surveys have been conducted throughout the lifetime of the project alongside acoustic imaging of the seabed. Statoil and partners have released all seismic data acquired up to and including 2008. Gravimetric surveying allowed initial estimates of the density of CO2 within the reservoir to be calculated and then later to determine an upper limit on the amount of CO2 dissolved in brine (when combined with other data). Key learnings highlighted from the past 20 years included the importance of controlling the injection in-situ conditions using downhole pressure and temperature gauges; repeated seismic surveys were crucial for ensuring containment monitoring; the combination of seismic and gravimetric data allowed an estimate of the amount of CO2 dissolution in water to be made and future dedicated monitoring plans should take into account higher frequency and resolution technologies now available.


Combining CCS and Geothermal

James-Craig cropOne of the themes covered by GHGT-13 in Lausanne is the potential of combining CCS and geothermal energy. There are different ways in which geothermal energy might be used. One idea is to inject CO2 into a saline aquifer at one point and then extract heat energy from another location within the same aquifer. Doublet extraction and injection of cooled water is a standard practice for delivering geothermal heat energy for district heating. The next step is to dispose of CO2. The concept is still some distance from reality but initial research is underway. Another concept is the location of conventional fossil fuel power plant with a geothermal source. Here geothermal energy would be used to provide a heat source for the capture plant reducing the energy demand from the combustion of fossil fuels and improving the energy conversion efficiency of the power plant. Initial modelling suggests overall operational costs could be reduced leading to a lower levelised unit cost of electricity compared to a power plant with no additional contribution from geothermal energy.


The Kemper County Energy Facility

James-Craig cropOne of the latest CCS projects to begin operating in the United States is the Kemper County Energy Facility in the state of Mississippi. Richard Espoito, the Geosciences, Carbon Utilization and Storage Southern Company, programme manager, presented an up-beat account at the start of the GHGHT-13 conference on Thursday. Richard stressed the modern ‘Risk Sophisticated’ attitude towards power production and environmental compliance. The company has a mixed portfolio of generation technologies including combined-cycle gas turbine, coal, nuclear, renewables and now this latest addition a lignite processing plant that produces, sulphuric acid, ammonia, power and CO2. Southern company also own natural gas and CO2 pipelines. The plant is located near a large lignite deposit which is mined and delivered to the site. This carbonaceous deposit has a lower calorific value by comparison with other coals, but here it can be dried with waste heat before the extraction of chemical commodities by gasification. CO2 is supplied via pipeline for enhanced oil recovery; a technology widely used in the state which has the added benefit of eventual permanent retention within oil reservoirs. Southern have also just announced support from the US Department of Energy to characterize a deep saline formation that could offer even greater permanent storage. Richard explained that one reason for using lignite is that the fuel source offers a long-term guarantee of supply and price stability to balance against the volatility of oil and gas price fluctuation. This state-of-the-art plant also maximizes the use of water by extracting moisture from the lignite thereby avoiding extraction from external sources such as rivers. Once fully operational Kemper will have 500 employees.


More Articles...