Background

This document was issued as a summary report at the conclusion of Phase 4 of the IEA Greenhouse Gas R&D Programme (IEA GHG).

IEA GHG is a cost-sharing Implementing Agreement operating under the aegis of the International Energy Agency (IEA). Members contribute annually to a common fund. Since 1974 the IEA has provided the Implementing Agreements (IA) structure as a route to international co-operation on energy issues. There are currently some 40 active programmes. The IA framework provides a legal mechanism for establishing the participants’ commitments and a management structure.

There are 2 categories of participant in an IA:

- Contracting Parties can be governments or entities nominated by them. They can also be international organisations in which governments participate.
- Sponsors are private sector entities which have not been designated by a government.

IEA GHG has an Executive Committee (ExCo) of representatives nominated by the Contracting Parties and Sponsors. The ExCo acts as a management board to decide on the work programme and supervise the use of the common funds.

Operational management of IEA GHG is assigned to an Operating Agent who is accountable to the ExCo. The Operating Agent is IEA Environmental Projects Ltd., a UK registered company.

For details about participation or any other aspect of the programme please contact Harry Audus, General Manager, IEA Greenhouse Gas R&D Programme at the address given on the back page.

Cover Pictures

Schwarze Pumpe Power Plant, Courtesy of Vattenfall AB
CO2 injection facilities at the RECOPEL project site in Poland.
Sleipner CO2 storage facilities, Courtesy of Statoil
The back cover shows membership of the IEA GHG Programme at the end of Phase 4.
Introduction

The members of the IEA GHG Programme (IEA GHG) have been active for 13 years in assessing and encouraging the development of CO₂ mitigation technology.

Over that period, they have succeeded in achieving widespread acceptance that carbon dioxide capture and storage (CCS) is one of the key options needed to obtain deep reductions in the emission of CO₂. CCS was merely a technical possibility when IEA GHG started in 1991 (see Table 1); it is now firmly on policymakers’ agendas.

IEA GHG members recognise the major role that fossil fuels play in underpinning world economic development. Through the programme’s work they have demonstrated the opportunity for the continued use of fossil fuels even under emission scenarios involving deep reductions in the emission of greenhouse gases.

<table>
<thead>
<tr>
<th>Timescale</th>
<th>Basic Technology</th>
<th>CO₂ Capture</th>
<th>CO₂ Utilisation & Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-term</td>
<td>PF coal, Natural gas combined cycle</td>
<td>Absorption, adsorption, indirect biofixation</td>
<td>Enhanced oil recovery, exhausted oil & gas wells, chemical feedstock</td>
</tr>
<tr>
<td>Medium-term</td>
<td>Integrated gasification combined cycles</td>
<td>Cryogenics, membranes</td>
<td>Aquifers & salt domes, new chemicals/fuels</td>
</tr>
<tr>
<td>Long-term</td>
<td>Oxyfuel, fuel cells, topping cycles</td>
<td>Advanced systems</td>
<td>Direct biofixation, solid disposal</td>
</tr>
</tbody>
</table>

Table 1: Original (1991) table showing the initial scope of IEA GHG technical assessments

By the end of 2005, IEA GHG had completed over 100 studies on behalf of its members. The core of the study work has focused on CCS, but many other areas are covered; for example, comparisons with other emission reduction options, and alternative energy carriers.

Work by IEA GHG quickly established that CO₂ could be captured from major emission sources such as power stations. However, the solution to the question of secure long-term stores was far from clear. IEA GHG’s first conference was held in Oxford, in 1993 and its main objective was to identify the prospects for credible CO₂ stores. At this conference the emphasis was on ocean storage but a few visionary papers described how CO₂ could be stored deep underground. The successors to this conference have now grown to be major biannual events: The GHGT series of International Conferences on Greenhouse Gas Control Technologies.
The major achievement for CCS technology over the last few years has been to demonstrate, on a large scale, that CO$_2$ can be stored underground. Major projects, initially at Sleipner in the North Sea, and subsequently, at Weyburn, Canada have demonstrated that CO$_2$ can be stored underground safely and its storage monitored (Figure 1).

![Sleipner production platform. (Courtesy of Statoil)](image)

Figure 1: Potential distribution of CO$_2$ in the Weyburn reservoir after 5000 years (from Wilson M, Monea M, (eds) IEA GHG Weyburn CO$_2$ monitoring and storage project summary report 2000-2004)
With the commencement of the In Salah CO₂ storage project in 2005 something of the order of 3 million tonnes per year of CO₂ is being stored underground and its location monitored (Figure 2).

Progress towards the establishment of CCS technology is expected to accelerate during Phase 5 of the IEA GHG Programme. Indeed, it will have to, if CO₂ emissions are to be stabilized, at the same time as the world’s energy needs and dependence on fossil fuels continues to increase (see Figure 3). This will be a challenging time for IEA GHG and its Members.

![Figure 2: Cumulative amount of monitored CO2 storage](image)

![Figure 3: Projections of CO2 emissions by sector from IEA World Energy Outlook 2004. Note that emissions from power generation are projected to continue to dominate and that transport is projected to be a major emission source of increasing importance. IEA GHG work has shown the potential for carbon capture technology in both these areas. For transport applications, CCS can be used to produce either low-carbon electricity or hydrogen.](image)
The need now is for large scale demonstrations of the integrated technology from capture through to storage.

There are many outstanding issues still occupying the programme membership. Amongst the key issues are:

- Driving down the cost of capture
- Development of confidence in underground storage

As the new phase develops IEA GHG will be working on these and other issues to ensure that CO₂ mitigation options can be compared and that CCS can be safely and legally introduced at commercial scale.
Programme Membership and Organisation

Over its 13 year life IEA GHG has built up a reputation as the premier source of unbiased information on the options available to reduce emissions of greenhouse gases to the atmosphere. The programme aims to produce policy relevant information but is not policy prescriptive. Members are drawn from a wide range of countries and industrial entities each with its own policy drivers. The main benefits of participation include:

- Contributing to the development of the work programme and by doing so introduce perspectives from an international range of national and industry sources.
- Access to unbiased information, obtained from international experts, presented in consistent and transparent evaluations.
- The added benefit of significant leverage on their contributions that can also reduce the potential for having to duplicate the efforts of others.
- IEA GHG is one of the International Energy Agency’s (IEA) Implementing Agreements (IA). Operation under the aegis of the IEA gives members the assurance of, and a route to participate in, the IEA’s comprehensive international programme of energy co-operation.

It is a key strength of the IEA GHG Programme that it has participants from both country governments and private sector entities. This provides a forum for perspectives from an international range of national and energy industry sources. Because of this range of views the activities of the programme are seen to be widely relevant and acceptable.

The advent of the Kyoto Agreement in February 2005 renewed world-wide activities on the climate change problem. Despite the reservations that some have about the Agreement, it is clear that one result is to focus policymakers’ attention on the next generation of energy technologies. Signatories to the Agreement have agreed to:

“Research on, and promotion, development and increased use of, new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies”.

If, as expected, this encourages the search for and development of new CO₂ mitigation opportunities the role of IEA GHG in ensuring that financial and technical resources are used effectively will be of increasing importance.
Phase 4 of the Programme finished at the end of 2004. During this phase IEA GHG was heavily involved in moving CCS from the realms of being a technical possibility firmly onto policy-makers’ agendas. IEA GHG activities expanded to include research facilitation, research networks, and enhanced communications initiatives. These activities were all aimed at confirming the credentials of CCS as a major option for climate change mitigation.

Studies continued to be the foundation-stone of the Programme’s activities. A list of the phase 4 studies is given on page 20. As can be seen from this list the members recognise the importance of both technical and non-technical issues.

Amongst the key studies was one on opportunities for early application of CO$_2$ sequestration technology (PH4/10, September 2002). ‘Early opportunities’ is a theme that has subsequently been widely picked-up and developed by others. Similarly, the ground-breaking work on cost curves for CO$_2$ storage (PH4/9, July 2002, and subsequent reports) has had a great deal of influence, e.g. in the preparation of the IPCC’s ‘Special Report on CO$_2$ Capture and Storage’. Other key studies assessed potential improvements in both pre- and post- combustion CO$_2$ capture technology (PH4/19, May 2003; PH4/33, November 2004). These studies set the standard for the assessment of leading technologies for CO$_2$ capture. This work is to be developed further to compare their relative merits by taking into account practical issues likely to be of interest to power generators.

The first International Research Network network established by IEA GHG was initiated at a workshop in October 2000 in conjunction with the US Department of Energy and ABB Lummus Global. The focus of the co-operative network is on capture of CO$_2$ using solvents. This initiative by IEA GHG - to establish networks that provide an international forum for researchers in key areas of CCS - has proved a great success. At the time of writing the meetings of CO$_2$ capture network are still attracting up to 40 participants and the number of research networks has expanded to five. The newest research network in the series the International Monitoring Network started in 2004. The initial objective was to use the results available from projects monitoring injected CO$_2$ to understand the current state-of-the-art and its limitations. The aim is to develop confidence that injected CO$_2$ can be monitored and verified and any leakage quickly detected.

IEA GHG’s members are interested in promoting practical research, design, and development (R,D,&D) but the programme is not a major source of funds. During Phase 4 the programme assisted in several R,D,&D projects. For example, two CO$_2$ capture projects in Canada; one on oxyfuel combustion at CANMET, and the other at the University of Regina’s International Test Centre. Both were assisted by providing the means for international cooperation in the projects and dissemination of information. Another project in which the programme participated was an industry-led design of a pre-combustion decarbonisation (PCD) power plant; the second stage of this project identified prospects for cost reduction. At the time of writing BP had announced that they intended to proceed
with a large-scale demonstration using PCD technology at a power station in Scotland, UK, linked to an oil field in the North Sea.

The initial practical R,D, & D storage project facilitated by IEA GHG was the Saline Aquifer CO₂ Storage research and monitoring project (SACS). This was initiated in 1997 by Statoil in conjunction with IEA GHG. Its objective was to monitor and learn from the world’s first commercial-scale saline aquifer storage project. As a result of this project IEA GHG published the ‘Saline Aquifer CO₂ Storage (SACS) Best Practice Manual. IEA GHG remains active in this area through participation in the European Commission’s CO2STORE project that builds on the earlier work and adds information from new storage prospects.

IEA GHG was also active in the Weyburn EOR project in Canada. This project has produced extensive information about the behaviour of CO₂ in this type of oil reservoir. In 2003 IEA GHG led experts from around the world in an external review of the project. Agreement has been reached that IEA GHG will continue to assist the partners in the second phase of the Weyburn EOR project.

The IEA GHG Programme runs a major conference every two years that is seen as being the premier communication event for workers in the area of greenhouse gas control technologies. Phase 4 of the Programme saw two of these International Conferences on Greenhouse Gas Control Technologies.

GHGT-6 was held in 2002 in Kyoto, Japan and attracted 510 delegates from 32 countries. About half the papers were on CCS technology. The other half covered a wide range of subjects including non-CO₂ greenhouse gases, afforestation, biomass and other energy sources, energy policy, etc.
GHGT-7 was held in Vancouver, Canada, in 2004. This was the largest conference in the GHGT series to date, attracting nearly 670 delegates from 35 different countries. In total some 230 technical papers and 200 posters were presented. In keeping with the progress made in gaining acceptance of the feasibility of CCS as a major option for the reduction of CO$_2$ emissions, there was an increased emphasis on addressing wider issues. Topics such as risk assessment and legal aspects were allocated sessions and there was a significant number of papers dealing with national action plans to implement CCS. On the final day, there was a special panel session on public perception of CCS at which the results from studies undertaken in the USA, Japan, and the UK were presented. None of the studies suggested fundamental public opposition to CCS.
Capture and Storage of CO$_2$ is best carried near large sources of emissions (see Figure 4 below). As illustrated in Figure 3 about 30% of emissions at present are from power generation and this percentage is projected to increase. Work is therefore focused on power generation but is applicable to other emission sources.

Figure 4: Mapping of CO$_2$ emission sources and potential stores in the USA (IEA GHG 2005/3 Building the cost curves for CO$_2$ storage: North America)

Capture

Currently, the main technologies used to generate power from fossil fuels are natural gas combined cycles (NGCC) and pulverized coal-fired steam cycles. Work by the IEA GHG and others has established that both these technologies can be adapted to allow post-combustion capture of CO$_2$ from the power station flue gases. Post-combustion CO$_2$ capture using amine-based solvents with proprietary additives have been demonstrated in commercial plants but at a much smaller scale and greater efficiency penalty than is required for its application as a CO$_2$ mitigation option. Figure 5 plots results of recent work by IEA GHG to assess the penalties incurred by adding post-combustion CO$_2$ capture to new state-of-the-art power plant. For coal-fired power plant, the efficiency would be reduced by 8-9% points and the power cost would increase by about 2 US cents/kWh. In the case of NGCC the efficiency penalty is 6 to 8 percentage points and the increase in cost of electricity about 1.2 c/kWh. These results are for a conceptual plant located on the coast in The Netherlands; other locations and
situations will give different results. R&D work in the area of CO₂ capture is aimed at achieving significant reductions in the cost and energy penalties.

An alternative power generation option, the Integrated Gasification Combined Cycle (IGCC) is generally agreed to be not yet competitive with coal-fired steam cycles. These cycles are however seen by many as an option that will be increasingly favoured by the drive to near-zero emissions from power plant. In this technology the fuel is reacted with oxygen and steam to produce a fuel gas consisting mainly of carbon monoxide (CO) and hydrogen. Commercial scale gasifiers have been built and there is a significant application for them treating refinery residues. Carbon dioxide can be removed by converting the CO to CO₂ which produces hydrogen by reaction with steam (shift-conversion). The natural gas equivalent is partial oxidation of the fuel. In both cases the decarbonised fuel is hydrogen. This hydrogen is then burnt as an integrated part of the power generation process. In addition, there is the future potential to use the hydrogen as a clean transportable fuel.

Figure 5: Results from IEA GHG studies show the penalties incurred by adding post combustion CO₂ capture to new state-of-the-art power plant
Adding CO₂ capture to IGCC would increase the cost of electricity by 1-1.5 cents/kWh which is less than for post-combustion capture. But this is starting from a higher base cost for the technology without CO₂ capture.

A third option for capturing CO₂, i.e. oxycombustion is also attracting serious interest. In this option the combustion agent is oxygen diluted with recycled flue gases. Because oxygen is separated from nitrogen before combustion the products of combustion are essentially CO₂ and water which are easily separated. The cost and energy penalties for this option are largely attributable to the production of oxygen.
In terms of projected efficiency and energy penalties there is little to choose between the pre- and post- combustion capture options. Both these options are near-commercial and dependant on large-scale demonstration to make significant progress towards their technical acceptance. Oxyfuel processing is less well developed than the leading 2 options but the penalties appear to be similar and plans for pilot plants are well developed.

IEA GHG is investigating the wider issues that might influence the choice between these 3 options. Overall, it is encouraging that there are 3 technically feasible options by which CO\textsubscript{2} could be captured, provided the necessary incentives were in place and the barriers to their adoption removed. Researchers are working on a variety of additional CO\textsubscript{2} capture options in the hope of reducing the capture penalties. IEA GHG has developed a preliminary screening methodology that can be used to establish whether or not such options have potential.

Transport

Transport of CO\textsubscript{2} from capture point to a store can be done by pipeline or by ship; both these means of transport are used commercially, but not for climate change reasons. The major issues are not technical, but are related to the scale and cost of moving huge amounts of CO\textsubscript{2} from source to sink. IEA GHG have developed a calculator that can be used to estimate costs of transportation. Typically costs are low compared to the cost of capture and lie in the region of 5-10/tonne of CO_2 for the quantities associated with power generation.

Storage

As highlighted in the introduction, storage underground is now established as a technical option. However, much work remains to be done before it can be widely adopted and accepted. Figure 6 illustrates some of the underground options.

Storage in deep saline aquifers is believed to have the most potential and have a large capacity. However, defining this capacity is proving to be difficult mainly because little work has been done to characterize aquifers.

Storage in depleted oil reservoirs also raises many issues, not least the world’s potential need for greatly increased recovery of oil in place. On one hand there is a near-term opportunity to store CO\textsubscript{2} as a consequence of using it for enhanced oil recovery (EOR). On the other hand, if CO\textsubscript{2}-EOR is not considered appropriate, a drive to maximize oil recovery could limit the availability of oil fields agreed to be ‘depleted’.
The key issue for underground storage is seen to be risk. There are relatively short-term risks to be satisfactorily dealt with in the areas of health and safety and proving the quantities of stored material. In the longer term there is the problem of responsibility for residual risks after the lifetime of the CCS project. IEA GHG operates one of its Research Networks in this area providing a forum and reference source for R&D activities.
Technology and Market Information

IEA GHG focuses much of its efforts on the production of technology and market information. This study work includes; technical and economic assessments, technology reviews and comparisons, and presentation of papers at key conferences.

In the next phase of the programme IEA GHG will continue to generate information in the following areas:

- Capture and transmission of CO₂
- Safe secure storage of CO₂
- Comparison of mitigation options
- Near zero-carbon energy carriers
- Implementation routes and barriers
- Major energy-using industries

An indication of the depth of activity covered by these brief bullet-points can be gained from Table 2 which highlights some of the implementation issues.

<table>
<thead>
<tr>
<th>Routes</th>
<th>Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Opportunities</td>
<td>Acceptance</td>
</tr>
<tr>
<td>Implementation Scenarios</td>
<td>Commercial/Financial</td>
</tr>
<tr>
<td>Scaling & Timing</td>
<td>Legal</td>
</tr>
<tr>
<td>Demonstrations Required</td>
<td>Locational Restrictions</td>
</tr>
<tr>
<td>Best practice and standards</td>
<td>Regulatory</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
</tr>
</tbody>
</table>

Table 2: Implementation routes and barriers

This work is, in the main commissioned from external experts, but in some cases the work is done in-house. Each report is subject to peer review by experts nominated by the members of the programme. This ensures the quality of the work and that it reflects the wide-range of members’ perspectives.
Confidence Building

The programme engages in confidence building by promotion of technology development. Amongst these activities are support for R,D&D programmes by facilitation of and provision of advice, and organization of research networks as forums for themed R&D activities.

Networks

The networks are a means for researchers in specific fields to meet and work on topics of common interest. Each one has goals which are determined by the participants – these may involve, for example, comparing and contrasting methods for CO₂ capture, and preparing guidelines on risk assessment approaches to CO₂ storage.

At the time of writing, a future network on oxyfuel combustion is planned.

Practical R&D

The practical projects are more varied in their style and content than the networks. In some of these, IEA GHG is instrumental in identifying the gaps, working with others to develop a programme of work, and participating in the subsequent project in an advisory capacity and to handle dissemination. In others, a project leader or funder has approached IEA GHG because of its
reputation and invited it to participate; perhaps to contribute in evaluating technology, in providing the international perspective, as a user of the results, or for dissemination (e.g. Weyburn, Recopol, ITC', CO2NET2).

In other cases, IEA GHG may have been asked to provide specific help and to provide international publicity. In none of these projects can IEA GHG make a significant financial contribution to the project because the Programme does not have sufficient funds for this.

The programme maintains a database of practical R&D projects that has proved to be a popular reference source. See www.co2captureandstorage.info

1 International Test Centre
Communications

IEA GHG aims at information dissemination to governmental and other policy makers, industry leaders, and public audiences such as environmental NGO's. Deliverables in this area include: Public summary reports, the bi-annual international GHGT conference, a quarterly newsletter, two websites, and maintenance of information databases.

The Programme has the goal of attracting and maintaining participation by a broad range of countries and industrial participants. Input from these participants is important to identify key issues that need to be addressed and ensure the results of IEA GHG’s work are widely applicable and realistic. Accordingly, the programme encourages additional participants; further information for prospective members is given on the main website.

IEA GHG members recognised early the importance of the Intergovernmental Panel on Climate Change (IPCC) activities and the IEA GHG Programme was deeply involved in ensuring that CCS was included as a mitigation option in the IPCC's Second Assessment report issued in 1995. IEA GHG continues to be involved. Over the last 2 years the programme team and several members of the ExCo, including the Chairman, have spent considerable effort on the preparation of the IPCC’s ‘Special Report on CO₂ Capture and Storage’.
Phase 5 - The Challenges

CO₂ mitigation technology has come a long way down the road to commercial application since the IEA GHG Programme started in 1991. However, there is still much to do to enable its commercial take-up on a world-wide scale.

The members of IEA GHG come from a wide range of countries and industrial entities and, despite their varied perspectives and drivers, co-operate very effectively. This spirit of cooperation is in keeping with seeking solutions to a global problem and it is hoped it can be retained as the programme develops.

The adoption of CO₂ capture and storage will always cost money, but there are real hopes that the penalties can be significantly reduced. Ultimately, this reduction will depend on demonstrating the technology in real applications.

Storage of CO₂ and monitoring the stored CO₂ has been shown to be technically feasible. However, there are many outstanding issues to be resolved, amongst them, a key challenge is to gain and retain public acceptance.

In this next 5-year phase of the programme members have agreed to 3 strategic themes:

- Continued generation of technology and market information that is widely accepted as reliable and unbiased
- Increased focus on activities aimed at building confidence in mitigation technology. For example, the Research Networks.
- Improved communications to ensure that information reaches decision and policy makers.
Members of the IEA GHG project team:

Eur Ing Harry Audus General Manager
Mr John J Gale Manager: Communications and Development
Mr John E Davison Manager: Technology and Market Information
Mr Michael R Haines Project Manager
Dr Stanley Santos Research Officer
Miss Angela Manancourt Research Officer
Mrs Andrea Y Lacey Communications Officer
Mrs D Louise Fazeli Team Secretary

Harry Audus John Gale John Davison Mike Haines
Stanley Santos Angela Manancourt Andrea Lacey Louise Fazeli
<table>
<thead>
<tr>
<th>STUDY</th>
<th>TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH4/1</td>
<td>Biofixation with Microalgae for Greenhouse Gas Abatement</td>
</tr>
<tr>
<td>PH4/2</td>
<td>Report of a Seminar “Putting CO₂ Sequestration on the Policy Agenda” Organised by CO₂ NET</td>
</tr>
<tr>
<td>PH4/3</td>
<td>CO₂ Technology Scenarios Seminar</td>
</tr>
<tr>
<td>PH4/4</td>
<td>International Test Network for CO₂ Capture: Report on 2<sup>nd</sup> Workshop</td>
</tr>
<tr>
<td>PH4/5</td>
<td>Non-CO₂ Greenhouse Gas Network: Inaugural meeting on mitigation technologies and economic analyses</td>
</tr>
<tr>
<td>PH4/6</td>
<td>Transmission of CO₂ and Energy</td>
</tr>
<tr>
<td>PH4/7</td>
<td>Workbook for Screening of Options to Reduce CO₂ Emissions from Existing Power Stations</td>
</tr>
<tr>
<td>PH4/8</td>
<td>Non-CO₂ Greenhouse Gas Network - 2<sup>nd</sup> meeting</td>
</tr>
<tr>
<td>PH4/9</td>
<td>Building the Cost Curves for CO₂ Storage - Part 1: CO₂ Sources</td>
</tr>
<tr>
<td>PH4/10</td>
<td>Opportunities for Early Application of CO₂ Sequestration Technology</td>
</tr>
<tr>
<td>PH4/11</td>
<td>International Test Network for CO₂ Capture: Report on 3<sup>rd</sup> Workshop</td>
</tr>
<tr>
<td>PH4/12</td>
<td>CO₂ Abatement by Production and Use of Gas to Liquids Transport Fuels</td>
</tr>
<tr>
<td>PH4/13</td>
<td>International Test Network for CO₂ Capture: Report on 4<sup>th</sup> Workshop</td>
</tr>
<tr>
<td>PH4/14</td>
<td>Solar Electricity to Reduce CO₂ Emissions</td>
</tr>
<tr>
<td>PH4/15</td>
<td>Acid Gas Injection: A Study of Existing Operations (Phase 1: Interim Report)</td>
</tr>
<tr>
<td>PH4/16</td>
<td>International Conventions: Implications for CO₂ Storage</td>
</tr>
<tr>
<td>PH4/17</td>
<td>Building a Common FEP Database</td>
</tr>
<tr>
<td>PH4/19</td>
<td>Potential for Improvement in Gasification Combined Cycle Power Generation with CO₂ Capture</td>
</tr>
<tr>
<td>PH4/20</td>
<td>Non-CO₂ Greenhouse Gas Network: Agriculture</td>
</tr>
<tr>
<td>PH4/21</td>
<td>Saline Aquifer CO₂ Storage (SACS) Best Practise Manual</td>
</tr>
<tr>
<td>PH4/22</td>
<td>International Test Network for CO₂ Capture: Report on 5<sup>th</sup> Workshop</td>
</tr>
<tr>
<td>PH4/23</td>
<td>Barriers to Overcome in Implementation of CO₂ Capture and Storage (2): Rules and Standards for Transmission and Storage of CO₂</td>
</tr>
<tr>
<td>PH4/24</td>
<td>Reduction of CO₂ Emissions by Adding Hydrogen to Natural Gas</td>
</tr>
<tr>
<td>PH4/25</td>
<td>Building the Cost Curves for the Industrial Sources of Non-CO₂ GHGs</td>
</tr>
<tr>
<td>PH4/26</td>
<td>Gas Hydrates for Deep Ocean Storage of CO₂</td>
</tr>
<tr>
<td>PH4/27</td>
<td>Canadian Clean Power Coalition Studies on CO₂ Capture and Storage</td>
</tr>
<tr>
<td>PH4/28</td>
<td>International Test Network for CO₂ Capture: Report on 6th Workshop</td>
</tr>
<tr>
<td>PH4/29</td>
<td>Overview of Monitoring Requirements for Geologic Storage Projects</td>
</tr>
<tr>
<td>PH4/30</td>
<td>Ship Transport of CO₂</td>
</tr>
<tr>
<td>PH4/31</td>
<td>Risk Assessment Workshop</td>
</tr>
<tr>
<td>PH4/32</td>
<td>Impact of Impurities on CO₂ Capture, Transport & Storage</td>
</tr>
<tr>
<td>PH4/33</td>
<td>Improvement in Power Generation with Post Combustion Capture of CO₂</td>
</tr>
<tr>
<td>PH4/34</td>
<td>International Test Network for CO₂ Capture: Report on 7th Workshop</td>
</tr>
<tr>
<td>PH4/35</td>
<td>Overview of Long Term Framework for CO₂ Capture and Storage</td>
</tr>
<tr>
<td>PH4/36</td>
<td>Use of the Clean Development Mechanism for CO₂ Capture and Storage</td>
</tr>
<tr>
<td>PH4/37</td>
<td>Modelling of Ocean Storage of CO₂ – The GOSAC Study</td>
</tr>
</tbody>
</table>