By Jasmin Kemper on Tuesday, 23 November 2021
Category: General

New IEAGHG report: 2021-02 CO2 as a Feedstock: Comparison of CCU Pathways

A range of carbon dioxide capture technologies have been developed, including amine-based routes and calcium looping methods, some of which are now considered to be at technology readiness level (TRL) 9. These technologies have been deployed across the world in large-scale carbon capture, utilisation and storage (CCUS) projects, permanently storing the CO2 in geological formations, which in 2020 had a capture and storage capacity of 40 MtCO2 per year. Direct air capture (DAC) technologies, capable of capturing CO2 directly from the atmosphere, have recently been developed and demonstrated.

As well as storing the CO2 in geological formations, there is increasing interest in the chemical transformation of captured CO2 to value-added products, such as building materials, chemicals, polymers, and synthetic fuels. This is driven partly by goals to increase sustainability, lower emissions, and the move towards more circular production routes. Developments have also been driven by realisations that producing some products using CO2 as a feedstock could lead to improvements in the product or the process, such as enhanced properties or lower feedstock costs. CO2 is already used extensively for urea manufacture in the fertiliser industry, for enhanced oil recovery (EOR), and for food and beverage production, with other conventional applications including use in fire-extinguishers, greenhouses, and cooling systems. Carbon capture and utilisation (CCU) refers to CO2 utilisation in which the supplied CO2 is captured either from an emission point source (e.g. fossil fuel combustion in an industrial plant) or directly from the atmosphere (DAC). With large volumes of CO2 projected to be captured in the longer term, CCU and CCS can play complementary roles in climate change mitigation.

For many utilisation routes, CO2 sequestration is only temporary with utilised CO2 being emitted to the atmosphere as the product is combusted or degrades at its end-of-life. Fuel products may last for less than a year, chemicals less than 10 years, and polymers less than 100 years. At the end of the product's life, the carbon atoms contained within these products often enter the atmosphere as CO2, with exceptions where this carbon is captured and stored permanently, e.g. in building materials. In absolute terms, these re-emitting CCU routes are therefore carbon neutral at best but typically net-positive in emissions when their entire life cycle is considered.

Key Messages



Recommendations:



To request a copy of the report, please email This email address is being protected from spambots. You need JavaScript enabled to view it. with the report reference number (2021-02).​